



# INFORME FINAL

ELABORACIÓN DE ESTUDIO DE RIESGO (AMENAZA Y VULNERABILIDAD)
Y DISEÑO DE OBRAS DE ESTABILIZACION EN LA VEREDA LA ESTANCIA
GRANDE, MUNICIPIO DE VENTAQUEMADA, JURISDICCION DE LA
CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR (CORPOCHIVOR).

CONVENIO

N° 038 DEL 2012

UPTC - CORPOCHIVOR

UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA

# **TABLA DE CONTENIDO**

|                                |                                                                                       | Pág. |
|--------------------------------|---------------------------------------------------------------------------------------|------|
| INTRO                          | DUCCION                                                                               | 13   |
| 1                              | GENERALIDADES                                                                         | 14   |
| 1.1<br>1.1.1<br>1.1.2          | PRESENTACION                                                                          | 14   |
| 1.2<br>1.2.1<br>1.2.2          | OBJETIVOS DEL PROYECTO<br>Objetivo General<br>Metodología                             | 16   |
| 1.3                            | LOCALIZACIÓN                                                                          | 18   |
| 1.4<br>1.4.1<br>1.4.2<br>1.1.1 | PERSONAL  DESCRIPCION DE ACTIVIDADES REALIZADAS  Trabajo de campo  22                 | 20   |
| 1.4.3<br>1.4.4                 | Análisis de LaboratorioTrabajos de Oficina                                            |      |
| 1.5                            | DESCRIPCIÓN DEL PROBLEMA Y SUS POSIBLES CAUSAS                                        | 23   |
| 1.6                            | ESTADO DE LA INFORMACIÓN                                                              | 24   |
| 2                              | ASPECTOS CLIMATICOS E HIDROLOGICOS                                                    | 25   |
| 2.1                            | ANÁLISIS HIDROLÓGICO                                                                  | 26   |
| 2.2<br>2.2.1                   | BALANCE HÍDRICOTipos de recarga                                                       |      |
| 2.3                            | ESTIMACIÓN DE LA ESCORRENTÍA                                                          | 29   |
| 2.4                            | ESTIMACIÓN DE LA PRECIPITACIÓN                                                        |      |
| 2.5                            | CALCULO DE CAULDAL DE DISEÑO A PARTIR DE LA IDF                                       | 50   |
| 2.6<br>Formul                  | ESTIMACIÓN DE LA EVAPOTRANSPIRACIÓN POTENCIAL (ETP)<br>a de J. B. García y J.D. López |      |
| 2.7                            | ESTIMACIÓN DEL BALANCE HÍDRICO                                                        | 53   |
| 2.8                            | Metodología                                                                           | 54   |
| 2.9                            | RESULTADOS OBTENIDOS                                                                  |      |
| 2.10<br>i.<br>ii.              | MORFOMETRÍA DE LA CUENCA<br>DENSIDAD DE DRENAJE (Dd)<br>TIEMPO DE CONCENTRACIÓN (TC)  | 61   |

| 3                                                                     | GEOLOGIA                                                                                                                            | 65                                       |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 3.1                                                                   | GEOLOGÍA HISTÓRICA                                                                                                                  | 65                                       |
| 3.2                                                                   | GEOLOGÍA REGIONAL                                                                                                                   | 66                                       |
| 3.3<br>3.3.1<br>3.3.2<br>3.3.3<br>3.3.4<br>3.3.5                      | GEOLOGIA LOCAL Estratigrafía Formación conejo (Kscn) Formación Plaeners (Kg2) Formación Labor y Tierna (Kg1) Depósitos cuaternarios | 67<br>67<br>69<br>70                     |
| 4                                                                     | GEOMORFOLOGÍA                                                                                                                       | 75                                       |
| 4.1                                                                   | ANÁLISIS FOTOGEOLÓGICO                                                                                                              | 75                                       |
| 4.2<br>4.2.1                                                          | PROCESOS MORFODINÁMICOSLos deslizamientos compuestos                                                                                |                                          |
| 4.3                                                                   | INCLINACIÓN DE LAS PENDIENTES                                                                                                       | 79                                       |
| 4.4<br>4.4.1                                                          | UNIDADES GEOMORFOLÓGICASGeoformas de Origen Denudacional                                                                            |                                          |
| 4.5                                                                   | MORFODINÁMICA - INTENSIDAD DE EROSIÓN                                                                                               | 85                                       |
| 5                                                                     | USO ACTUAL Y COBERTURA DEL SUELO                                                                                                    | 87                                       |
| 5.1                                                                   | VEGETACIÓN                                                                                                                          | 88                                       |
| 5.2                                                                   | BOSQUE ANDINO                                                                                                                       | 90                                       |
| 5.3                                                                   | BOSQUE RASTROJO ALTO ANDINO                                                                                                         | 90                                       |
| 5.4                                                                   | MATORRAL ANDINO SECUNDARIO                                                                                                          | 90                                       |
| 5.5                                                                   | BOSQUE SECUNDARIO HETEROGÉNEO ANDINO                                                                                                | 91                                       |
| 5.6                                                                   | MATORRAL BAJO                                                                                                                       | 91                                       |
| 5.7                                                                   | MATORRAL BAJO DE LADERAS CON AFLORAMIENTOS DE ROCAS                                                                                 | 91                                       |
| 5.8.1<br>DEL ES<br>5.8.2<br>5.8.3<br>5.8.4<br>5.8.5<br>5.8.6<br>COMUN | TUDIOESTUDIO DE LA FLORAIDENTIFICACIÓN Y DESCRIPCIÓN DE COBERTURASTEJIDOS ARTIFICIALESTEJIDO URBANO DISCONTINUO                     | NCIA<br>92<br>95<br>97<br>98<br>DE<br>99 |
| 6.1                                                                   | Unidades Hidrogeológicas                                                                                                            | 121                                      |

| 6.1.1<br>6.1.2<br>6.1.3                  | AcuíferoAcuitardoAcuicierres                                                                                                                                                               | 121               |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 6.2<br>6.2.1<br>6.2.2<br>6.2.3           | MARCO HIDROLÓGICO GENERAL UNIDAD I (Permeabilidad Alta) UNIDAD II (Permeabilidad Media) UNIDAD III (Permeabilidad Baja)                                                                    | 122<br>122        |
| 6.3                                      | INVENTARIO DE PUNTOS DE AGUA                                                                                                                                                               | 123               |
| 7                                        | GEOELECTRICA                                                                                                                                                                               | 124               |
| 7.1<br>7.1.1                             | ESTUDIO GEOELECTRICO (TOMOGRAFIA ELECTRICA RESISTIVA) INTRODUCCION                                                                                                                         |                   |
| 7.2                                      | OBJETIVO                                                                                                                                                                                   | 127               |
| 7.3<br>7.3.1<br>7.3.2                    | PRINCIPIO DEL METODO GEOFISICO.  Resistividad Aparente:  Dispositivos:                                                                                                                     | 127               |
| 7.4<br>7.4.1<br>7.4.2                    | METODOLOGIATOMOGRAFIA N°1RESULTADOS                                                                                                                                                        | 134               |
| 8                                        | GEOTECNIA                                                                                                                                                                                  | 139               |
| 8.1<br>8.1.1                             | EXPLORACIÓN DE CAMPOSondeos geotécnicos                                                                                                                                                    |                   |
| 8.2<br>8.2.1<br>8.2.2<br>8.2.3<br>8.2.4  | CARACTERIZACIÓN DEL SUELO Y SUBSUELOTrabajos de Laboratorio                                                                                                                                | 144<br>144<br>149 |
| 8.3<br>8.3.1<br>8.3.2<br>Fuente<br>8.3.3 | Clasificación del Macizo Rocoso.  Índice de Calidad de la Roca (RQD):  Clasificación Según el RMR:  resultados del estudio.  Clasificación Según el Índice Geológico de Resistencia (GSI): | 154<br>155<br>158 |
| 8.4                                      | CINEMÁTICA DE LOS MOVIMIENTOS                                                                                                                                                              | 159               |
| 8.5<br>8.5.1<br>8.5.2                    | CAUSAS DE LOS MOVIMIENTOS EN MASACausas RealesCausas Inmediatas                                                                                                                            | 159               |
| 8.6<br>8.6.1                             | ANÁLISIS DE ESTABILIDAD Y MODELACIÓN GEOTÉCNICAAnálisis estructuralmente controlado                                                                                                        |                   |
| 8.7                                      | Análisis estructuralmente no controlado                                                                                                                                                    | 167               |

| 9                  | ZONIFICACION DE AMENAZAS POR FENOMENOS DE REM                | OCION |
|--------------------|--------------------------------------------------------------|-------|
| EN MAS             | SA 173                                                       |       |
| 9.1                | DIAGNÓSTICO PRELIMINAR DE AMENAZAS                           | 173   |
| 9.2                | RESULTADO DE ANALISIS                                        | 175   |
| 9.3                | ANALISIS DE AMENAZA                                          | 176   |
|                    | za Alta                                                      | 179   |
| Amenaz             | za Media                                                     |       |
| 10                 | EVALUACIÓN Y ANALISIS DE VULNERABILIDAD Y RIESG              | O180  |
| 10.1               | VULNERABILIDAD                                               | 180   |
| 10.2               | INVENTARIO DE VIVIENDAS                                      | 181   |
| 10.3               | ANÁLISIS DE VULNERABILIDAD                                   | 183   |
| 10.4               | Tipificación de las Estructuras                              | 184   |
| 10.5               | CALIFICACION DE LOS DAÑOS                                    | 185   |
| 10.6               | INDICE DE EXPOSICION (IE)                                    | 187   |
| 10.7               | INDICE DE RESISTENCIA (IR)                                   | 188   |
| 10.8               | TIPOLOGIA DE VIVIENDAS                                       | 189   |
| 10.9               | INTENSIDAD E INDICE DE DAÑO                                  | 192   |
| 11                 | EVALUACION Y GENERACION DE ESCENARIOS DE RIE                 | SGO   |
|                    | 196                                                          |       |
| RESUL <sup>*</sup> | TADOS DE ENCUESTAS                                           | 197   |
| 11.1               | Análisis de vulnerabilidad                                   | 198   |
| 11.2               | Análisis estadístico de las encuestas realizadas en el munic |       |
| ventaque<br>11.2.1 | emada, vereda estancia grandeLas viviendas                   |       |
|                    | Servicios básicos.                                           |       |
| 11.2.2             | Acueducto                                                    |       |
| 11.2.4             | Alcantarillado                                               |       |
| 11.2.5             | Seguridad social                                             |       |
| 11.2.6             | Discapacidad                                                 |       |
| 11.2.7             | Genero.                                                      |       |
| 11.2.8             | Presencia de menores de edad                                 | 203   |
| 11.2.9             | Niños escolarizados                                          | 203   |
| 11.2.10            | Adultos mayores                                              | 203   |
| 11.2.11            | Estratificación de las viviendas                             |       |
| 11.2.12            | Tipo de vivienda                                             |       |
| 11.2.13            | Area aproximada de las viviendas                             |       |
| 11.2.14            | Número de pisos tiene las viviendas                          |       |
| 11.2.15            | Edad de las construcciones                                   | 206   |

| 11.2.16 | Armazón de las viviendas                                    | 206 |
|---------|-------------------------------------------------------------|-----|
| 11.2.17 | Cubierta de las viviendas                                   |     |
| 11.2.18 | Muros de las viviendas                                      | 207 |
| 11.2.19 | Acabado de los pisos                                        | 207 |
| 11.2.20 | Estado de las construcciones                                | 207 |
| 11.2.21 | Daños en las construcciones                                 | 208 |
| 11.2.22 | Tipos de daño de las viviendas                              |     |
| 11.2.23 | Parte de la construcción más afectada                       | 209 |
| 11.2.24 | La vivienda con bases o cimientos                           | 209 |
| 11.2.25 | Inestabilidad del suelo                                     |     |
| 11.2.26 | Ingresos económicos de las familias                         | 209 |
| 11.2.27 | Hogares con apoyo de familia extensa                        | 210 |
| 11.2.28 | Acciones de mitigación implementadas                        | 210 |
| 11.2.29 | Capacidad de afrontamiento del riesgo                       | 211 |
| 11.2.30 | Actuaciones de las personas frente a un evento catastrófico | 211 |
| 11.2.31 | Tiempo que lleva el fenómeno de remoción en masa            |     |
| 11.2.32 | Conocimiento del fenómeno de remoción en masa               |     |
| 11.2.33 | Afectación emocional familiar                               |     |
| 11.2.34 | Economía familiar                                           |     |
| 11.2.35 | Uso del suelo                                               |     |
| 11.2.36 | Capacitación en prevención de riesgos                       |     |
| 11.2.37 | Reubicación de las familias.                                |     |
| 11.2.38 | Consejo municipal de gestión del riesgo                     |     |
| 11.2.39 | Peticiones a los entes municipales                          | 214 |
| 12      | OBRAS RECOMENDADAS                                          | 215 |
| 13      | CONCLUSIONES                                                | 216 |
| 14      | RECOMENDACIONES                                             | 218 |
| 15      | BIBLIOGRAFÍA                                                | 219 |

# LISTAS DE FOTOGRAFÍAS.

|                 |                                                              | Pag. |
|-----------------|--------------------------------------------------------------|------|
| Fotografía 1. E | XPLORACION DIRECTA DEL SUBSUELO (SPT)                        | 21   |
| Fotografía 2. A | floramiento Formación Conejo (Kscn)                          | 68   |
| Fotografía 3. F | ormacion Plaeners(Kg2)                                       | 69   |
| Fotografía 4. F | ormación Labor y tierna (Kg1)                                | 71   |
| Fotografía 5. D | epósitos de material heterogéneo                             | 73   |
| Fotografía 6. T | ejido urbano discontinuo presente en la zona de estudio      | 99   |
| Fotografía 7. R | ed vial presente en la zona de estudio                       | 100  |
| Fotografía 8. R | ed vial presente en la zona de estudio                       | 101  |
| Fotografía 9. P | astos limpios presente en la zona de estudio                 | 103  |
| Fotografía 10.  | Pastos arbolados presentes en la zona de estudio             | 104  |
| Fotografía 11.  | Bosque denso bajo presente en la zona de estudio             | 108  |
| Fotografía 12.  | Cupressaceaes presente en la zona de estudio                 | 110  |
| Fotografía 13.  | Myrtaceae presente en la zona de estudio                     | 111  |
| Fotografía 14.  | Arbustal mesofilo presente en la zona destudio               | 113  |
| Fotografía 15.  | Cobertura Helechal                                           | 114  |
| •               | Sucesión vegetal secundaria                                  |      |
| Fotografía 17.  | Parte media del deslizamiento y equipo TERRAMETER LS 04      | 4-   |
| 064-250.        | 135                                                          |      |
| Fotografía 18.  | Parte media del deslizamiento.                               | 136  |
| Fotografía 19.  | Perforación realizada en la zona de estudio                  | 141  |
| Fotografía 20.  | Punto de rocas aflorantes en la cercanía del                 |      |
| deslizamiento   | 142                                                          |      |
| Fotografía 21.  | Medición de volumen de la muestra para establecer propieda   | des  |
| físicas14       | 7                                                            |      |
| Fotografía 22.  | Muestra fallada en el ensayo de compresión no confinada      | 148  |
| Fotografía 23.  | Muestras a las que se les realizo la prueba de corte directo | 149  |
| Fotografía 24.  | Ensayo de Tilt Test                                          | 149  |
| Fotografía 25.  | Ensayo de carga por punta o ensayo Franklin                  | 150  |
| Fotografía 26.  | Parte superior del movimiento                                | 167  |
| Fotografía 27.  | Parte media del movimiento                                   | 168  |
| Fotografía 28.  | •                                                            |      |
| Fotografía 29.  | Se observa el material desplazado                            | 177  |
| Fotografía 30.  | Agrietamientos generados en el material                      |      |
| Fotografía 31.  | Parte baja del deslizamiento.                                | 181  |
| Fotografía 32.  | Tipo de viviendas en la zona                                 |      |
| Fotografía 33.  | En parte baja del deslizamiento se observa el area urbana    |      |
| Fotografía 34.  | Vista de viviendas de la parte baja del movimiento           | 200  |
| Fotografía 35.  | Vivienda del sector evaluado                                 | 201  |

| Fotografía 36. | Adulto mayor habitante de la zona                         | 204 |
|----------------|-----------------------------------------------------------|-----|
| Fotografía 37. | Mujeres habitantes del sector                             | 205 |
| Fotografía 38. | Mujer dueña de establecimiento comercial el sector        | 207 |
| Fotografía 39. | Mujer dueña de establecimiento comercial el sector        | 208 |
| •              | Establecimiento comercial el sector.                      | 210 |
| •              | Habitante de la zona perteneciente a la defensa civil del |     |
| municipio      |                                                           | 211 |
| Fotografía 42. | Establecimiento comercial el sector                       | 213 |
| Fotografía 43. | Establecimiento comercial el sector.                      | 214 |
|                |                                                           |     |

# **LISTAS DE TABLAS**

|             |                                                                    | Pág.  |
|-------------|--------------------------------------------------------------------|-------|
| Tabla 1.    | Tabla general para la determinación de número de curva (CN)        | 31    |
| Tabla 2.    | Escorrentía Estación Ventaquemada, suelo tipo SML                  | 33    |
| Tabla 3.    | Escorrentía Estación Ventaquemada suelo tipo SCL                   | 34    |
| Tabla 4.    | Escorrentía Estación Ventaquemada tipo de suelo SCH                | 35    |
| Tabla 5.    | Estaciones pluviométricas utilizadas en la estimación de la        |       |
| precipitaci | ón para el área de estudio                                         | 36    |
| Tabla 6.    | Precipitación media mensual por estación                           | 39    |
| Tabla 7.    | Rangos de temperatura Ventaquemada                                 | 53    |
| Tabla 8.    | Valores de Evapotranspiración                                      | 53    |
| Tabla 9.    | Calculo de infiltración                                            | 56    |
| Tabla 10.   | Estimación del Balance Hídrico                                     | 58    |
| Tabla 11.   | Valores de parámetros morfométricos para la microcuenca            | 64    |
| Tabla 12.   | Clasificación de las pendientes.                                   | 81    |
| Tabla 13.   | Descripción geomorfológica                                         | 84    |
| Tabla 14.   | Porcentaje de cobertura Vereda La Estancia Grande                  | 118   |
| Tabla 15.   | Unidades de cobertura Vegetal                                      | 119   |
| Tabla 16.   | Resistividades de algunos suelos y rocas                           | 130   |
| Tabla 17.   | Clasificación de materiales                                        | 136   |
| Tabla 18.   | Coordenadas de los sondeos realizados                              | 140   |
| Tabla 19.   | Puntos de tomas de muestras de rocas aflorantes                    | 141   |
| Tabla 20.   | Resumen de Resultados                                              | 152   |
| Tabla 21.   | Resumen de resultados ensayos de laboratorio en rocas              | 153   |
| Tabla 22.   | Resumen de Resultados de la Clasificación RMR                      | 157   |
| Tabla 23.   | Puntos de Control para realizar la clasificación geomecánica       | 158   |
| Tabla 24.   | Coeficientes de aceleración sísmica para el departamento Boyacá    | 163   |
| Tabla 25.   | Coeficientes de reducción de coeficientes de aceleración sísmica.  | 163   |
| Tabla 26.   | Resultado análisis estructuralmente estructurado falla planar      | 164   |
| Tabla 27.   | Resultado análisis estructuralmente estructurado falla cuña        | 164   |
| Tabla 28.   | Resultado análisis estructuralmente estructurado falla cuña        | 165   |
| Tabla 29.   | Valores de Propiedades Físicas y Mecánicas Utilizadas en los Mod   | solet |
| de estabili | dad                                                                | 169   |
| Tabla 30.   | Factores de seguridad para el modelo perfil A-A'                   | 171   |
| Tabla 31.   | Factores de seguridad para el modelo perfil B-B'                   | 172   |
| Tabla 32.   | Parámetros físicos y naturales estimados para la Identificación de |       |
| Zonas Ine   | stables (Deslizamientos)                                           | 174   |
| Tabla 33.   | CATEGORIZACION DE AMENAZAS POR FENOMENOS DE                        |       |
|             | N EN MASA (FRM)                                                    |       |
| Tabla 34.   | CATEGORIZACION DE AMENAZA POR FRM SEGÚN NSR-10                     | 176   |
| Tabla 35.   | Criterios de resistencia de la estructura                          | 184   |

| Tabla 36. | Categorías de los daños                                         | 185  |
|-----------|-----------------------------------------------------------------|------|
| Tabla 37. | Índice de Exposición                                            | 188  |
| Tabla 38. | Factores de Ponderación                                         | 192  |
| Tabla 39. | MATRIZ PARA LA DETERMINACION INTENSIDAD DE DAÑO                 | 193  |
| Tabla 40. | DETERMINACION INDICE DE DAÑO                                    | 193  |
| Tabla 41. | Rangos de velocidad utilizadas en el estudio                    | 194  |
| Tabla 42. | MATRIZ PARA ESCENARIOS DE RIESGO                                | 196  |
| Tabla 43. | Formulario de inventario de viviendas ¡Error! Marcador no defin | ido. |

# LISTAS DE FIGURAS.

|             |                                                               | Pag.  |
|-------------|---------------------------------------------------------------|-------|
| Figura 1.   | Localizacion                                                  | 18    |
| Figura 2.   | ORGANIGRAMA                                                   |       |
| Figura 3.   | Precipitación media multianual mensual.                       | 40    |
| Figura 4.   | Grafico de precipitacion media multianual                     |       |
| Figura 5.   | Gráfico de precipitación media multianual (2009)              |       |
| Figura 6.   | Precipitación mensual estacion Ventaquemada (2010)            |       |
| Figura 7.   | Precipitacion media mensual estacion Ventaquemada (2011)      | 43    |
| Figura 8.   | Isoyetas mes de enero y febrero                               | 44    |
| Figura 9.   | Isoyetas mes de marzo y abril                                 | 45    |
| Figura 10.  | Isoyetas mes de mayo y junio                                  | 46    |
| Figura 11.  | Isoyetas Julio Agosto                                         | 47    |
| Figura 12.  | Isoyetas mes de septiembre octubre                            | 48    |
| Figura 13.  | Isoyetas mes de Noviembre y Diciembre                         | 49    |
| Figura 14.  | Comportamiento de las Curvas del Balance Hídrico              | 59    |
| •           | Ilustrativa de la microcuenca Ventaquemada                    |       |
| Figura 16.  | Mapa geologico                                                | 74    |
| Figura 17.  | Fotografías pertenecientes al vuelo 2804-43,44 tomadas por el | IGAC, |
| durante los | s años 90                                                     | 76    |
| Figura 18.  | Esquema del movimiento compuesto                              | 78    |
| _           | Esquema del movimiento, perfil movimiento compuesto           |       |
|             | Imagen del Mapa de inclinación de las pendientes              |       |
| Figura 21.  | Imagen del Mapa geomorfológico.                               | 82    |
| Figura 22.  | Imagen del Mapa erosión                                       | 86    |
| Figura 23.  | Posiciones aproximadas de las Líneas gula de las regiones     |       |
|             | es y las fajas altitudinales                                  |       |
| _           | Criterios para la clasificación de los bosques                |       |
| _           | Cobertura vegetal y uso de suelo                              |       |
|             | esultado del estudio                                          |       |
| _           | Principio teórico de operación de las TER's.                  |       |
| _           | Rangos de resistividad para diferentes materiales             |       |
| -           | Dispositivo Wenner                                            |       |
| -           | Localización línea de tomografía                              |       |
| -           | Perfil 1 tomografía.                                          |       |
|             | Perfil litológico 1                                           |       |
| _           | Sondeo Geotécnico S2                                          |       |
| Figura 33   | Límites de Atterbea                                           | 145   |

| Figura 34. | Manera de establecer las fases de la roca                             | 147  |
|------------|-----------------------------------------------------------------------|------|
| Figura 35. | Guía para la definición del Índice geológico de resistencia (GSI)     | 158  |
| Figura 36. | Análisis cinemático, falla por volcamiento                            | 165  |
| Figura 37. | Análisis cinemático falla planar                                      | 166  |
| Figura 38. | Análisis cinemático falla por cuña                                    | 166  |
| Figura 39. | Perfil geológico AA'                                                  | 170  |
| Figura 40. | Modelo de análisis perfil A-A'                                        | 170  |
| Figura 41. | Modelo de análisis perfil B-B'                                        | 171  |
| Figura 42. | Indicadores de Índice de Vulnerabilidad social                        | 182  |
| Figura 43. | Tipos de estado                                                       | 189  |
| Figura 44. | Modelo Geológico - Geotécnico Perfil A. ¡Error! Marcador no defin     | ido. |
| Figura 45. | Modelo Geológico - Geotécnico Perfil B. ¡Error! Marcador no defin     | ido. |
| Figura 46. | Modelo Geológico - Geotécnico - Perfil C¡Error! Marcado               | r no |
| definido.  |                                                                       |      |
| Figura 47. | FS para el escenario actual en la condición extrema del Perfil A. ¡EI | ror! |
| Marcador   | no definido.                                                          |      |

Figura 48. FS para el escenario actual en la condición extrema del Perfil B. ¡Error! Marcador no definido.

Figura 49. FS para el escenario actual en la condición extrema del Perfil C. ¡Error! Marcador no definido.

## **LISTAS DE ANEXOS**

ANEXO 1 - MAPAS TEMÁTICOS

MAPA 1 GEOLÓGICO

MAPA 2 GEOMORFOLÓGICO

MAPA 3 SUSCEPTIBILIDAD A LA EROSIÓN

MAPA 4 DE PENDIENTES

MAPA 5 COBERTURA Y USO DEL SUELO

MAPA 6 Zonificación Geomecánica

MAPA 7 Zonificación de la Amenaza

MAPA 8 VULNERABILIDAD FÍSICA Y SOCIAL

MAPA 9 ZONIFICACIÓN DE RIESGOS POR FRM

ANEXO 2 - ANÁLISIS FOTO INTERPRETACIÓN

ANEXO 3 - RESULTADOS DE LABORATORIO

ANEXO 4 - CARTERAS TOPOGRÁFICAS

ANEXO 5 – HIDROLOGÍA

ANEXO 6 - CURVAS IDF

ANEXO 7 - FICHAS DE INVENTARIO DE PROCESOS GEOMORFOLÓGICOS

ANEXO 8 - ENCUESTAS SOCIOECONÓMICAS

ANEXO 9 - FORMATO DE LEVANTAMIENTO DE INFORMACIÓN DE VULNERABILIDAD FÍSICA

ANEXO 10 – DISEÑO DE OBRAS DE MITIGACIÓN, PROTECCIÓN Y RECUPERACION.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



#### INTRODUCCION.

El departamento de Boyacá fue uno de los más azotados por la ocurrencia de amenazas geoclimáticas detonadas por inusuales montos de precipitación por evento y acumulados, que evidenciaron una falencia en la especialización de tales amenazas, y por tanto una marcada limitación en el ordenamiento territorial y en la gestión del riesgo. Los fenómenos de remoción en masa (FRM) son una de las problemáticas que da lugar a la inestabilidad en el terreno y que afecta cada vez más al departamento; siendo así una amenaza para los habitantes que se encuentran ubicados en la Vereda la Estancia Grande Municipio de Ventaquemada. De esta manera haciéndolos más susceptibles; ya que estos muy destructivos, cuyas consecuencias involucran fenómenos procesos son como son deslizamientos caída de rocas en diversas áreas. El cual se define como un proceso gravitacional que involucra movimientos y procesos erosivos, factores naturales que alteran la composición de las geoformas, estructuras geológicas; junto con el uso inadecuado del suelo, el daño a la cobertura vegetal, la variación de los aspectos climáticos y procesos artificiales como la actividad antrópica. De acuerdo con lo anterior se realizara un estudio que contribuirá a la identificación de toda clase de movimiento que se está presentando en la zona afectada con el fin de mitigar dichos sucesos para el beneficio de la comunidad.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



# 1 GENERALIDADES

## 1.1 PRESENTACION

# 1.1.1 JUSTIFICACION

Ante la permanente ocurrencia de Fenómenos de Remoción en Masa y Eventos Torrenciales en diferentes puntos del país, el Gobierno Nacional, emitió la Ley 99 de 1993, referente a los principios ambientales generales, responsabilidades y funciones de las Corporaciones Regionales y su Numeral 23 que contempla entre otros, el realizar actividades de análisis, seguimiento y control de desastres; en coordinación con las demás autoridades competentes y asistenciales, en los aspectos medioambientales, para la Prevención y Atención de Emergencias y Desastres.

En concordancia con la Ley 1523 de 2012, en la cual se adopta la política Nacional de gestión del Riesgo y sus Decretos reglamentarios, dispone que dentro del Sistema Nacional de Gestión del Riesgo de Desastres; corresponde al Concejo Departamental de Gestión del riesgo de Desastres el manejo de la cobertura departamental y al Concejo Municipal de Gestión de Riesgo de Desastres, cuando trata de eventos municipales.

El presente proyecto pretende aportar la evaluación de aspectos geológicos y geotécnicos, para determinar los diferentes movimientos y factores que producen deslizamientos que originan pérdidas socio-económicas de gran magnitud, el mal uso del suelo y el aumento de viviendas en la zona afectada, ayuda a favorecer al crecimiento de la vulnerabilidad de la población ante situaciones de desastre. Por la poca atención prestada por parte de los agentes de control a este tipo de fenómenos .Creando así un nivel de alto riesgo, por esta razón el estudio a realizar a la susceptibilidad al fenómeno de remoción en masa (FRM) da una





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



solución al problema generando un ambiente de confianza y mejorando al buen desarrollo del municipio.

# 1.1.2 ALCANCE

Para el buen desarrollo de este proyecto en la Vereda la Estancia Grande Municipio de Ventaquemada, se realizaran jornadas de campo con el fin de determinar las zonas afectadas y a partir de lo cual se analizaran aspectos geológicos, geomorfológicos, geotécnicos con base en las muestras recopiladas en el terreno, y al llevar a cabo los respectivos ensayos de laboratorio se determinara el tipo de suelo, se realizara el respectivo análisis geotécnico y se identificaran las causas y características de dicho movimiento, para calcular el grado de amenaza y vulnerabilidad relacionado con la población aledaña al sector afectado.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



# 1.2 OBJETIVOS DEL PROYECTO

# 1.2.1 Objetivo General

Realizar el estudio de riesgo (amenaza y vulnerabilidad) y diseño de obras en la Vereda la Estancia Grande Municipio Ventaquemada área afectada por fenómenos de remoción de masa (FRM). Municipio de la jurisdicción de la Corporación Autónoma Regional de CORPOCHIVOR.

# 1.2.2 Metodología

Realizar un estudio geomorfológico detallado con el propósito de apoyar la identificación y la posterior zonificación de las principales amenazas naturales

En particular las relacionadas con los eventos de remoción en masa, erosión, socavación, represamientos e inundaciones.

Evaluar aspectos climáticos (precipitación) de los años 2010, 2011 y 2012 utilizando los datos de las estaciones meteorológicas del departamento y limítrofes, y compararlos con las series anteriores disponibles.

Evaluación de Información histórica y memoria colectiva sobre los eventos de (FRM) y sísmicos ocurridos en la zona de estudio.

Desarrollar la caracterización geotécnica de los diferentes materiales involucrados en los diferentes sectores del deslizamiento.

Evaluar sondeos de Tomografía a fin de determinar la superficie de falla actual.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Establecer el grado de vulnerabilidad social y la percepción de la comunidad ante el desarrollo de eventos de alta peligrosidad, mediante la toma de encuestas con la comunidad afectada, potencialmente susceptible y de moderada a baja susceptibilidad.

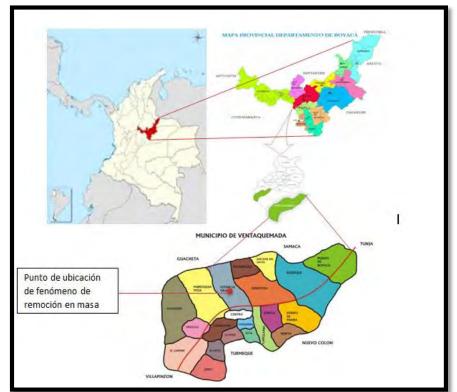
Establecer vulnerabilidades y escenarios de riesgos de las áreas de mayor importancia dentro de la zona de estudio.

Recomendar medidas de reducción de riesgos de desastres a nivel puntual.

Establecer medidas de estabilización mediante la evaluación de diferentes escenarios y el grado de confiabilidad ante la implementación de medidas estructurales.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



# 1.3 LOCALIZACIÓN.

El área de estudio se encuentra localizada, en el departamento de Boyacá, en el municipio de Ventaquemada que está situado sobre la troncal central del norte a unos 29 Km de la ciudad de Tunja, en la Vereda la Estancia Grande que corresponde a las coordenadas (X = 1060976; Y = 1086217), hacia la parte occidental de la vía principal que comunica la ciudad de Tunja con la capital del país Santa Fe de Bogotá.

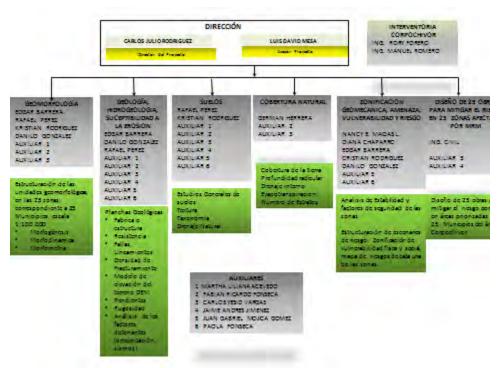
Figura 1. Localizacion



Fuente: Resultado del estudio






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



# 1.4 PERSONAL

Para el desarrollo de éste proyecto, la UPTC contó con la dirección del Ingeniero Geólogo Carlos Julio Rodríguez, y los profesionales M.s.c. en Geotecnia, Rafael H. Pérez E y así como por los Ingenieros Geólogos, Luis D. Mesa, Edgar Barrera, Danilo H. Gonzalez, Nancy E. Macías Leguizamón, Kristian Rodriguez, Biólogo German Saavedra, Socióloga Diana Chaparro, El Ingeniero topógrafo Jorge Mesa. Por parte de Corpochivor la interventoría los Ingenieros Rory Forero y Manuel Romero.

Figura 2. ORGANIGRAMA



Fuente: Resultado del estudio





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



# 1.4.1 DESCRIPCION DE ACTIVIDADES REALIZADAS

En la primera fase de la investigación se hizo el reconocimiento de la zona inestable, estableciendo aspectos geológicos y sectores con similares patrones de desplazamiento, buscando definir la evolución cronológica de la inestabilidad, al igual que su dinámica y una clasificación preliminar de los eventos. Esto sirvió de base para proyectar la exploración del terreno (directa e indirecta) y demás actividades necesarias.

A continuación se relacionan las distintas actividades adelantadas para recopilar toda la información posible y que es la base de los análisis correspondientes.

# 1.4.2 Trabajo de campo

La exploración del subsuelo y reconocimiento de campo se ejecutó con un procedimiento de exploración directa para conocer las características litológicas y geomecánicas de los materiales removidos con el fin de diseñar los modelos de análisis. Durante la visita de campo al área afectada se llevó a cabo un recorrido con el fin de delimitar el fenómeno de remoción en masa (FRM), a partir de esta recopilación de información definir la zona mediante topografía. De acuerdo con lo observado en relación con la dinámica del movimiento, y los posibles mecanismos de falla, se establecieron los sitios adecuados para realizar la exploración directa del subsuelo, al igual que la exploración geolectrica (Tomografía).





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



El trabajo de campo consistió en:

**Apiques y sondeos geotécnicos.**En total, se realizaron 3 apiques geotécnicos y 3 sondeos manuales por SPT (standar penetration test), en los que se tomaron muestras para análisis, cuya profundidad de exploración varío de los 2 a los 10 m (Anexo 3 y fotografía 1).

Fotografía 1. EXPLORACION DIRECTA DEL SUBSUELO (SPT)



Fuente: Registro Fotográfico

Levantamiento topográfico: Altimetría y Planimetría de cada uno de los sectores de estudio mediante uso de una estación total. Se incluyó: localización de viviendas, infraestructura visible y en general todo detalle de interés para el estudio delimitación de los deslizamientos.

El trabajo topográfico detallado, se elaboró en escala 1: 750





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Levantamiento Geológico y Geotécnico de la zona: Comprende el reconocimiento del lugar, haciendo el levantamiento geológico que permitió conocer la litología, rasgos estructurales, grado de alteración de la roca, depósitos no consolidados y demás detalles de utilidad que sirvieron para crear el modelo geológico local (escala 1: 2000). Con el fin de conocer en detalle la naturaleza del subsuelo, y la caracterización de cada uno de los (FRM) se realizó la exploración del subsuelo mediante la realización de apiques, perforaciones.

**Sondeos Geolectricos (tomografías).** En el área del estudio se realizaron dos (2) Sondeos Geoeléctricos, que se ubicaron dentro de zona afectada por el Fenómeno de Remoción en Masa (FRM) y el área periférica; los que permitieron identificar parámetros de resistividad del subsuelo, interpretar la litología, definir algunas características hidrogeológicas y geotécnicas (anexo 2).

**Diagnóstico estructural de viviendas.** Se realizó un inventario de tres (18) viviendas, cualificando la afectación del fenómeno de remoción en masa (FRM), en aspectos estructurales, en donde se resaltó la presencia de fisuras en pisos y paredes (anexo 5). Se averiguó con los habitantes del sector acerca de la manifestación y evolución en el tiempo del fenómeno de remoción en masa (FRM), al igual que su relación con la ocurrencia de lluvias intensas o eventos sísmicos.

# 1.4.3 Análisis de Laboratorio

En los laboratorios de Petrografía y Mecánica de Suelos y Rocas de la UPTC Sede Sogamoso se realizaron los ensayos necesarios para clasificación de suelos a las muestras recogidas en los apiques y sondeos. Los ensayos ejecutados fueron: Caracterización Petrográfica, límites de Atterberg, granulometría, humedad





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



natural, peso unitario, compresión inconfinada, Corte Directo, Coeficiente de Permeabilidad Propiedades Físicas, Tilt Test, Carga por punta, Angulo de reposo, En total se hicieron 105 análisis.

# 1.4.4 Trabajos de Oficina

Los trabajos de oficina incluyeron las actividades que se relacionan a continuación:

- 1. Recopilación y revisión de información,
- 2. Procesamiento y análisis de resultados,
- 3. Concepción del modelo de secuencia cronológica de los distintos eventos ocurridos,
- 4. Definición del mapa de Amenazas por movimientos en masa,
- 5. Análisis de estabilidad para las zonas homogéneas definidas,
- 6. Planteamiento de obras de control, manejo y recuperación del área afectada. Las planchas geológicas del IGAC tomadas en cuenta, fueron la 191 y 210, a escala 1:100.000.; las fotografías aéreas y Los datos de pluviometría del IDEAM de los años de 1957 a 2011, de la estación de Ventaquemada

## 1.5 DESCRIPCIÓN DEL PROBLEMA Y SUS POSIBLES CAUSAS

En el área de la jurisdicción de CORPOCHIVOR se registran situaciones de amenaza en sitios que presentan evidencias de condiciones de riesgo inminente, para lo cual la Corporación Autónoma Regional de Chivor-CORPOCHIVOR ha hecho un reconocimiento de sitios críticos de riesgo por fenómenos naturales y antrópicos, para intervención con medidas de mitigación de riesgo. Por tal motivo, se requiere disponer de conceptos técnicos de ingeniería geológica que garanticen





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



la aplicación de criterios necesarios para realizar el diseño de obras de protección, mitigación y corrección de los efectos de los fenómenos de remoción en masa (FRM) existentes.

El estudio incluye análisis geológicos y geotécnicos necesarios para realizar el análisis de ingeniería y el diseño detallado de la alternativa seleccionada junto con los cálculos de cantidades de obra, presupuesto y especificaciones técnicas.

# 1.6 ESTADO DE LA INFORMACIÓN

Mediante la evaluación de estudios suministrados por parte de la Universidad Pedagógica y Tecnológica de Colombia, Facultad Seccional Sogamoso, Escuela de Ingeniería Geológica, así como por la Corporación Autónoma Regional de Chivor (CORPOCHIVOR) se logró identificar información primaria, de diferentes temáticas necesarias para el desarrollo de análisis y procesamiento básico de parámetros en aras de dar cumplimiento a los objetivos propuestos para el presente estudio.

La información recopilada tuvo en cuenta aspectos tales como:

- Localización del estudio.
- Geología, Geomorfología.
- Hidrología y Climatología.
- Suelos y uso actual del suelo.

Información Geofísica: sísmica, Geoeléctrica, sondeos eléctricos verticales, perfiles y registros eléctricos.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Hidrogeológica: Inventario de puntos de agua, niveles de agua, cartografía hidrogeológica, balance hídrico.

Después de llevar a cabo la identificación de la información base de apoyo se procedió a evaluar y calificar el grado de confiabilidad de la misma, de tal manera que se realizó procesos de depuración y selección

#### 2 ASPECTOS CLIMATICOS E HIDROLOGICOS

El clima constituye el conjunto de condiciones de la atmósfera, que caracterizan el estado o situación del tiempo atmosférico y su evolución en un lugar dado. El clima se determina por el análisis espacio - tiempo de los elementos que lo definen y los factores que lo afectan.

Entre los elementos del clima se tienen precipitación, temperatura, humedad, brillo solar, vientos y entre otros; los dos primeros son los más importantes, por cuanto permiten definir, clasificar y zonificar el clima de una región dada, en tanto que los otros, se presentan como atributos caracterizadores de las unidades ya definidas. Los factores del clima, pendiente, altitud, formas del relieve, generan cambios climáticos a nivel regional o local, mientras que la cobertura vegetal es causa y efecto del clima tanto como su indicador.

.

El clima es importante, desde el punto de vista físico-biótico, por su directa intervención en la evolución de los suelos y el paisaje. Además, por ser uno de los elementos o insumos necesarios para la determinación de las amenazas naturales





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



desde el punto de vista socioeconómico por su influencia en la decisión de utilización de las tierras para determinados usos.

Para el análisis climático del área de municipio de VENTAQUEMADA, se utilizó información meteorológica, suministrada por el IDEAM, de las estaciones meteorológicas ubicadas dentro del límite municipal y las más cercanas, como son Nuevo Colón, Turmequé, Ventaquemada, Puente Adriana, Ramiriqui, Villa luisa y Tunja.

Ventaquemada se presenta en un piso térmico frío y piso bioclimático páramo, para lo cual se analizaron parámetros como precipitación, temperatura, humedad relativa, precipitación, velocidad del viento y evaporación cuyos valores fueron registrados por el IDEAM, durante el periodo de 1965 – 2011 en la estación de VENTAQUEMADA.

# 2.1 ANÁLISIS HIDROLÓGICO

El análisis hidrológico tiene como punto de partida la delimitación de subcuentas de tal manera que se determinen los parámetros morfométricos correspondientes, para posteriormente establecer la relación directa con datos pertenecientes al balance hídrico dentro del contexto mensual multianual. De esta forma es posible establecer aspectos básicos indicativos y preliminares para determinar las áreas de mayor interés respecto a la relación de infiltración y evapotranspiración.

# 2.2 BALANCE HÍDRICO.

Para estimar las reservas del agua subterránea de los sistemas acuíferos que se extienden subsuperficialmente y en el subsuelo dentro del área de estudio





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



perteneciente al Municipio de Ventaquemada y sus alrededores, se debe evaluar la magnitud de la recarga potencial proveniente de la precipitación a través de los suelos teniendo en cuenta espacial y temporalmente la magnitud de la escorrentía, la evapotranspiración y la variaciones de contenido de humedad de los suelos de cada una de las cuencas y/o subcuencas involucradas en el área de estudio. Por tal razón se hace necesaria la estimación de la escorrentía superficial, evapotranspiración y valores de precipitación media mensual multianual en cada una de las subcuencas, lo que permitirá estimar el Balance Hídrico con el fin de obtener la oferta total de agua subterránea y superficial.

La información obtenida puede ser utilizada para evaluar los recursos hídricos del área de trabajo (calidad, cantidad y distribución en tiempo y espacio), además de la capacidad para el suministro y satisfacción de la demanda; así mismo se pueden proyectar y diseñar proyectos relacionados con el agua, planificar buenas estrategias de gestión del recurso hídrico; de la misma forma es de gran importancia que exista una actualización de las redes de datos en las estaciones en la zona de trabajo que permitan tomar los datos reales del comportamiento de las diferentes variables que se utilizan para la estimación del balance hídrico.

La recarga a un acuífero puede definirse como el agua que alcanza las reservas subterráneas. Este concepto es importante para estudios de recursos hídricos y para determinar el comportamiento de ciertos contaminantes que puedan llegar a presentarse en un momento dado.

# 2.2.1 Tipos de recarga

La recarga a un acuífero puede darse naturalmente debido a la precipitación, a las aguas superficiales, es decir, a través de ríos y lagos, o por medio de transferencias desde otras unidades hidrogeológicas o acuíferos; pero también





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



puede darse de manera artificial producto de actividades como la irrigación, fugas de redes de abastecimiento o por infiltraciones de embalses y depósitos (Balek, 1988; Custodio, 1997; Simmers, 1990; Lerner, 1990; Samper, 1997).

Lerner propone una clasificación similar pero un poco más completa sobre las fuentes de recarga:

- 1. Recarga directa o recarga difusa, proveniente del agua lluvia.
- **2.** Recarga concentrada o indirecta, producto de cauces permanentes, estacionales y efímeros.
- **3.** Flujos laterales, procedentes de otros acuíferos.
- **4.** Retorno de riegos, excesos de riegos o las pérdidas en los canales de distribución.
- **5.** Recarga Urbana, producto de fugas de redes de desabastecimiento y redes de alcantarillado.

Lerner (1990) y luego Simmers (1997) definen la recarga localizada como una categoría intermedia la cual implica un movimiento horizontal del agua antes de que termine el proceso de recarga.

La recarga puede determinarse por varios métodos, y se clasifican en 5 grupos:

**Medidas directas:** La recarga se mide directamente mediante la construcción de lisímetros. Un lisímetro es un bloque de suelo dotado de dispositivos que permiten medir el flujo que drena hasta el acuífero.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



**Balance hídrico:** Se determinan los flujos de entrada y de salida de un sistema, y la recarga al acuífero constituye el residuo de la ecuación de balance; hacen parte de este grupo los balances de humedad del suelo, de agua en canales, el método de fluctuaciones del nivel freático y el que iguala la descarga a la recarga.

**Trazadores:** Su principal uso es determinar fuentes de recarga y zonas de descarga aunque se utilizan para cuantificar la recarga a través de un balance de masa del trazador.

**Aproximaciones de Darcy:** Se encuentran valores de cabezas hidráulicas a partir de las ecuaciones de flujo de Richards y Boussinesq y luego se determina la velocidad de filtración. Si se asumen condiciones estables la recarga se determina directamente de la ecuación de Darcy.

**Empíricos**: Consiste en el desarrollo de ecuaciones empíricas que relacionan la recarga con alguna variable como la precipitación.

# 2.3 ESTIMACIÓN DE LA ESCORRENTÍA

La escorrentía superficial se estima con el fin de conocer las variaciones espaciales y temporales de los caudales que drenan por los cauces de las cuencas o subcuencas delimitadas para el área de estudio, y su magnitud está condicionada por la precipitación, las características físicas y estructurales del suelo, además de la influencia de otros factores como son la pendiente, el tipo de uso asociado a éste, la densidad y tipo de cobertura vegetal.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Para tal fin el Servicio de Conservación de Suelos de los Estados Unidos de Norteamérica (USSCS) desarrolló un método directo de estimación del escurrimiento que integra la intercepción, infiltración y el almacenamiento en pequeñas depresiones, excepto la evapotranspiración potencial, en una sola abstracción. El método, conocido como Número de Curva, establece que la relación lluvia-escurrimiento es una función del tipo de suelo, uso del suelo y de condiciones hidrológicas (Chow et al., 1964; USDA, 1986).

La estimación del escurrimiento superficial por el método de Número de Curva se realiza con la siguiente ecuación:

$$Q = \frac{(P - 0.2S)^2}{(P + 0.8S)}$$

Dónde:

**Q=** Escorrentía

**P=** Precipitación

**S=** (25400/CN)-254

**CN=** Número de curva (tablas)

En el método de la Curva Numérica cada tipo o clase de suelo es asignado a un grupo hidrológico. Los grupos hidrológicos se basan fundamentalmente en la capacidad de infiltración, la cual puede relacionarse con la conductividad hidráulica saturada de la superficie del suelo. La información cartográfica de suelos, y los mapas de cobertura vegetal y uso de suelo fueron reclasificadas. La cobertura vegetal y uso del suelo se reclasificó como cobertura/tratamiento y





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



condición hidrológica. La información de suelos se reclasificó con objeto de generar el mapa de grupos hidrológicos de suelo.

La información anteriormente descrita constituye los principales insumos del método de SCS para la estimación del número de curva, que representa un coeficiente de escurrimiento para una zona, o una cuenca hidrológica (ver Tabla 1) (Chow et al., 1994; USDA, 1986).

Tabla 1. Tabla general para la determinación de número de curva (CN)

| Tipo de vegetación Tratamiento Condición |            | Tipo (      | Tipo de suelo |    |    |    |
|------------------------------------------|------------|-------------|---------------|----|----|----|
|                                          |            | Hidrológica | Α             | В  | С  | D  |
| Barbecho                                 | Desnudo    | -           | 77            | 86 | 91 | 94 |
|                                          | CR         | Pobre       | 76            | 85 | 90 | 93 |
|                                          | CR         | Buena       | 74            | 83 | 88 | 90 |
| Cultivos                                 | R          | Pobre       | 72            | 81 | 88 | 91 |
| alineados                                | R          | Buena       | 67            | 78 | 85 | 89 |
|                                          | R + CR     | Pobre       | 71            | 80 | 87 | 90 |
|                                          | R + CR     | Buena       | 64            | 75 | 82 | 85 |
|                                          | С          | Pobre       | 70            | 79 | 84 | 88 |
|                                          | С          | Buena       | 65            | 75 | 82 | 86 |
|                                          | C + CR     | Pobre       | 69            | 78 | 83 | 87 |
|                                          | C + CR     | Buena       | 64            | 74 | 81 | 85 |
|                                          | C + T      | Pobre       | 66            | 74 | 80 | 82 |
|                                          | C + T      | Buena       | 62            | 71 | 78 | 81 |
|                                          | C + T + CR | Pobre       | 65            | 73 | 79 | 81 |
|                                          | C + T + CR | Buena       | 61            | 70 | 77 | 80 |
| Cultivos no                              | R          | Pobre       | 65            | 76 | 84 | 88 |
| alineados, o con                         | R          | Buena       | 63            | 75 | 83 | 87 |
| surcos pequeños                          | R + CR     | Pobre       | 64            | 75 | 83 | 86 |
| o mal definidos                          | R + CR     | Buena       | 60            | 72 | 80 | 84 |
|                                          | С          | Pobre       | 63            | 74 | 82 | 85 |
|                                          | С          | Buena       | 61            | 73 | 81 | 84 |
|                                          | C + CR     | Pobre       | 62            | 73 | 81 | 84 |
|                                          | C + CR     | Buena       | 60            | 72 | 80 | 83 |
|                                          | C + T      | Pobre       | 61            | 72 | 79 | 82 |
|                                          | C + T      | Buena       | 59            | 70 | 78 | 81 |
|                                          | C + T + CR | Pobre       | 60            | 71 | 78 | 81 |
|                                          | C + T + CR | Buena       | 58            | 69 | 77 | 80 |
| Cultivos densos                          | R          | Pobre       | 66            | 77 | 85 | 89 |

ELABORACIÓN DE ESTUDIO DE RIESGO (AMENAZA Y VULNERABILIDAD) Y DISEÑO DE OBRAS DE ESTABILIZACION EN LA VEREDA LA ESTANCIA GRANDE, MUNICIPIO DE VENTAQUEMADA, JURISDICCION DE LA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR (CORPOCHIVOR).





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



| de leguminosas                    | R     | Buena          | 58  | 72 | 81 | 85 |
|-----------------------------------|-------|----------------|-----|----|----|----|
| o prados en                       | С     | Pobre          | 64  | 75 | 83 | 85 |
| alternancia                       | С     | Buena          | 55  | 69 | 78 | 83 |
|                                   | C + T | Pobre          | 63  | 73 | 80 | 83 |
|                                   | C + T | Buena          | 51  | 67 | 76 | 80 |
| Pastizales o                      | -     | Pobres         | 68  | 79 | 86 | 89 |
| pastos naturales                  | -     | Regulares      | 49  | 69 | 79 | 84 |
|                                   | -     | Buenas         | 39  | 61 | 74 | 80 |
| Pastizales                        | С     | Pobres         | 47  | 67 | 81 | 88 |
|                                   | С     | Regulares      | 25  | 59 | 75 | 83 |
|                                   | С     | Buenas         | 6   | 35 | 70 | 79 |
| Prados                            | -     | -              | 30  | 58 | 71 | 78 |
| permanentes                       |       |                |     |    |    |    |
| Matorral-herbazal,                | -     | Pobres         | 48  | 67 | 77 | 83 |
| siendo el                         | -     | Regulares      | 35  | 56 | 70 | 77 |
| matorral                          | -     | Buenas         | ≤30 | 48 | 65 | 73 |
| preponderante                     |       |                |     |    |    |    |
| Combinación de                    | -     | Pobres         | 57  | 73 | 82 | 86 |
| arbolado y                        | -     | Regulares      | 43  | 65 | 76 | 82 |
| herbazal, cultivos                | -     | Buenas         | 32  | 58 | 72 | 79 |
| agrícolas leñosos                 |       |                |     |    |    |    |
| Montes con                        | -     | Pobres         | 45  | 66 | 77 | 83 |
| pastos                            | -     | Regulares      | 36  | 60 | 73 | 79 |
| (aprovechamiento silvopastorales) | -     | Buenas         | 25  | 55 | 70 | 77 |
| Bosques                           | -     | I Muy pobre    | 56  | 75 | 86 | 91 |
|                                   | -     | II Pobre       | 46  | 68 | 78 | 84 |
|                                   | -     | III Regular    | 36  | 60 | 70 | 76 |
|                                   | -     | IV Buena       | 26  | 52 | 63 | 69 |
|                                   | -     | V Muy<br>buena | 15  | 44 | 54 | 61 |
| Caseríos                          | -     | -              | 59  | 74 | 82 | 86 |
| Caminos en tierra                 | -     | -              | 72  | 82 | 87 | 89 |
| Caminos con<br>firme              | -     | -              | 74  | 84 | 90 | 92 |

Fuente: Resultado del estudio

#### Dónde:

**CR=** Con cubierta de residuos vegetales que ocupe al menos el 5% de la superficie del suelo durante todo el año.

**R=** Si las labores de la tierra (labrar, gradear, sembrar, etc.) se realizan en línea recta, sin considerar la pendiente del terreno.

ELABORACIÓN DE ESTUDIO DE RIESGO (AMENAZA Y VULNERABILIDAD) Y DISEÑO DE OBRAS DE ESTABILIZACION EN LA VEREDA LA ESTANCIA GRANDE, MUNICIPIO DE VENTAQUEMADA, JURISDICCION DE LA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR (CORPOCHIVOR).





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



C= Si el cultivo se realiza siguiendo las curvas de nivel.

**T=** Si se trata de terrenos aterrazados (terrazas abiertas con desagüe para la conservación de suelos).

Tabla 2. Escorrentía Estación Ventaquemada, suelo tipo SML

| Р         | Q          | SML         | CN |
|-----------|------------|-------------|----|
| 94.916667 | 3.13938304 | 310.4444444 | 45 |
| 79.333333 | 0.90747924 |             |    |
| 82.666667 | 1.27920396 |             |    |
| 76.75     | 0.66116428 |             |    |
| 77.666667 | 0.74432706 |             |    |
| 115.58333 | 7.86301127 |             |    |
| 300.33583 | 103.449057 |             |    |
| 243.83333 | 67.1105013 |             |    |
| 133       | 13.1855577 |             |    |
| 94.333333 | 3.03395946 |             |    |
| 111.08333 | 6.67834132 |             |    |
| 135.58333 | 14.0684716 |             |    |
| 116.91667 | 8.22971208 |             |    |
| 105.75    | 5.38340219 |             |    |
| 122.91667 | 9.96578341 |             |    |

Fuente: Resultado del estudio





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Tabla 3. Escorrentía Estación Ventaquemada suelo tipo SCL

| Р          | Q          | SCL        | CN |
|------------|------------|------------|----|
| 96.75      | 3.48123235 | 130.848485 | 66 |
| 82.966667  | 1.31558216 |            |    |
| 107.93333  | 5.8989156  |            |    |
| 2.966667   | 0.00247491 |            |    |
| 83.391667  | 1.36793411 |            |    |
| 81.9083333 | 0.60857397 |            |    |
| 76.141667  | 0.22711319 |            |    |
| 70.6       | 0.00317433 |            |    |
| 63.083333  | 0.02332771 |            |    |
| 64.791667  | 0.10197689 |            |    |
| 67.766667  | 0.18138682 |            |    |
| 54.675     | 0.00064519 |            |    |
| 61.641667  | 0.86943501 |            |    |
| 78.958333  | 0.22692189 |            |    |
| 53.808333  | 0.56554722 |            |    |
| 75.625     | 0.00457805 |            |    |

Fuente: Resultado del estudio





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Tabla 4. Escorrentía Estación Ventaquemada tipo de suelo SCH

| Р         | Q          | SCH        | CN |
|-----------|------------|------------|----|
| 63.283333 | 0.00457805 | 52.0240964 | 83 |
| 86.808333 | 1.82314072 |            |    |
| 62.708333 | 0.00123355 |            |    |
| 77        | 0.68337925 |            |    |
| 54.491667 | 0.19058384 |            |    |
| 77.216667 | 0.70291519 |            |    |
| 77.575    | 0.7357998  |            |    |
| 88.3      | 2.04072778 |            |    |
| 77.2      | 0.70140311 |            |    |
| 95.225    | 3.19576251 |            |    |
| 81.358333 | 1.12616272 |            |    |
| 84.6      | 1.52197528 |            |    |
| 66.016667 | 0.0490738  |            |    |
| 79.6275   | 0.93786211 |            |    |
| 51.641667 | 0.36381821 |            |    |

Fuente: Resultado del estudio

# 2.4 ESTIMACIÓN DE LA PRECIPITACIÓN

El conocimiento de la variación espacial y temporal de la precipitación y su magnitud se realiza con el fin de evaluar las observaciones cuando se toman muestras de un evento de precipitación o de una serie de eventos. La evaluación de la muestra observada incluye el examen de influencias externas, como pueden ser las influencias que puedan tener los instrumentos de medición, y también se debe tener en cuenta la interpretación de los efectos del medio ambiente físico, como la fisiografía.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Con el fin de conocer el comportamiento de este parámetrohidroclimatológico se utilizaron los datos de 2 estaciones climatológicas (ver tabla 5), las cuales se encuentran ubicadas dentro y en áreas colindantes del área de estudio del presente convenio. Con el propósito de obtener el valor (mm) de precipitación media mensual multianual de la zona de estudio se utilizaron los datos mensuales de las estaciones seleccionadas para un periodo de 46 años (1965-2011), estos se utilizaron junto con los datos promedio mensuales multianuales de escorrentía y evapotranspiración para estimar el balance hídrico de las subcuencas del área de estudio.

Tabla 5. Estaciones pluviométricas utilizadas en la estimación de la precipitación para el área de estudio.

| 3507002 | VENTAQUEMAD | RIO     | BOYACA | VENTAQUEMAD |
|---------|-------------|---------|--------|-------------|
|         | Α           | TURMEQU |        | Α           |
|         |             | E       |        |             |

Fuente: Datos del Idean

En la Tabla 5 se presentan los valores de precipitación medios mensuales multianuales (mm) para cada una de las estaciones delimitadas dentro del área de estudio, información que se utilizó para la estimación de la recarga de agua para la Formación Conejo (Kcn) que se delimito y que hace parte del área del presente convenio.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



| NOMBRE<br>ESTACION | ESTE        | NORTE       | ENER<br>O | FEBRER<br>O | MARZ<br>O | ABRI<br>L | MAY<br>O | JUNI<br>O | JULI<br>O | AGOST<br>O | SEPTIEMBR<br>E | OCTUBR<br>E | NOVIEMBR<br>E | DICIEMBR<br>E | AÑ<br>O  | ANUAL       | PROMEDIO<br>AÑO |
|--------------------|-------------|-------------|-----------|-------------|-----------|-----------|----------|-----------|-----------|------------|----------------|-------------|---------------|---------------|----------|-------------|-----------------|
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 9         | 12          | 16        | 237       | 167      | 131       | 109       | 126        | 57             | 143         | 120           | 12            | 196<br>5 | 1139        | 94.91666667     |
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 8         | 3           | 101       | 70        | 76       | 80        | 160       | 79         | 93             | 30          | 188           | 64            | 196<br>6 | 952         | 79.33333333     |
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 19        | 1           | 66.5      | 157.5     | 104      | 176       | 84        | 141        | 74.5           | 38.5        | 106           | 24            | 196<br>7 | 992         | 82.66666667     |
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 21        | 41          | 16        | 173       | 77       | 109       | 131       | 83         | 97             | 89          | 75            | 9             | 196<br>8 | 921         | 76.75           |
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 60        | 16          | 11        | 157       | 108      | 104       | 115       | 56         | 73             | 134         | 80            | 18            | 196<br>9 | 932         | 77.66666667     |
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 31        | 49          | 14        | 65        | 141      | 112       | 141       | 184        | 189            | 274         | 150           | 37            | 197<br>0 | 1387        | 115.5833333     |
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 114       | 56          | 285       | 318       | 611      | 271       | 410       | 422        | 336            | 333.03      | 279           | 169           | 197<br>1 | 3604.0<br>3 | 300.3358333     |
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 209       | 139         | 170       | 422       | 262      | 252       | 375       | 318        | 372            | 176         | 198           | 33            | 197<br>2 | 2926        | 243.8333333     |
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 14        | 24          | 101       | 181       | 210      | 219       | 236       | 191        | 148            | 106         | 102           | 64            | 197<br>3 | 1596        | 133             |
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 27        | 74          | 105       | 132       | 92       | 73        | 141       | 116        | 115            | 87          | 170           |               | 197<br>4 | 1132        | 94.33333333     |
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 8         | 77          | 67        | 120       | 114      | 196       | 112       | 138        | 61             | 159         | 108           | 173           | 197<br>5 | 1333        | 111.0833333     |
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 10        | 42          | 172       | 196       | 143      | 213       | 215       | 150        | 183            | 150         | 97            | 56            | 197<br>6 | 1627        | 135.5833333     |
| Ventaquemada       | 108491<br>5 | 106254<br>1 |           |             | 40        | 185       | 115      | 238       | 184       | 169        | 217            | 125         | 103           | 27            | 197<br>7 | 1403        | 116.9166667     |
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 5         | 32          | 79        | 229       | 109      | 139       | 108       | 212        | 106            | 104         | 94            | 52            | 197<br>8 | 1269        | 105.75          |
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 2         | 21          | 51        | 206       | 82       | 223       | 151       | 188        | 65             | 265         | 151           | 70            | 197<br>9 | 1475        | 122.9166667     |
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 37        | 50          | 48        | 103       | 102      | 207       | 170       | 129        | 109            | 122         | 50            | 34            | 198<br>0 | 1161        | 96.75           |
| Ventaquemada       | 108491<br>5 | 106254<br>1 |           | 43          | 10        | 186       | 153.8    | 113.5     | 128       | 69.7       | 81.1           | 83.5        | 93            | 34            | 198<br>1 | 995.6       | 82.96666667     |
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 30        | 39.5        | 100.5     | 166.8     | 85.5     | 103.5     | 132       | 168.5      | 77.4           | 75.5        | 115           | 201           | 198<br>2 | 1295.2      | 107.9333333     |
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 2         |             | 6.8       | 106.3     | 67.5     | 79.1      | 130.7     | 112        | 32.5           | 115.7       | 34            | 69            | 198<br>3 | 755.6       | 62.96666667     |
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 46        | 50          | 38.5      | 91.5      | 98.2     | 124.5     | 100.3     | 143.9      | 117.8          | 46.5        | 131           | 12.5          | 198<br>4 | 1000.7      | 83.39166667     |
| Ventaquemada       | 108491<br>5 | 106254<br>1 | 4.4       | 19.5        | 63.5      | 128.5     | 120.5    | 167.7     | 83.4      | 89         | 109.4          | 93.3        | 42            | 61.7          | 198<br>5 | 982.9       | 81.90833333     |





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



| Ventaquemada | 108491      | 106254      | 3    | 44.1 | 53    | 71.5  | 43    | 148.5 | 98    | 73.5  | 83    | 170.3 | 112.3 | 13.5 | 198      | 913.7  | 76.14166667 |
|--------------|-------------|-------------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|----------|--------|-------------|
|              | 5           | 1           |      |      |       |       |       |       | 112.2 |       |       |       |       |      | 6        | 217.2  |             |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 5.5  | 25.5 | 27.5  | 58    | 118.8 | 103.9 | 149.8 | 115.7 | 21.5  | 169.2 | 44    | 7.8  | 198<br>7 | 847.2  | 70.6        |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 0.5  | 29   | 121.3 | 24.7  | 113   | 62.8  | 111.5 | 62.5  | 60.8  | 92.9  | 71    | 7    | 198<br>9 | 757    | 63.08333333 |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 11.7 | 48   | 60.5  | 86    | 146.2 | 63    | 79.1  | 52.9  | 45    | 96.7  | 49    | 39.4 | 199<br>0 | 777.5  | 64.79166667 |
| Ventaquemada | 108491<br>5 | 106254<br>1 |      | 25.5 | 99    | 67.5  | 86.5  | 83    | 155.2 | 105.1 | 33.7  | 43.5  | 48.3  | 65.9 | 199<br>1 | 813.2  | 67.76666667 |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 13.5 | 7.5  | 49    | 60    | 69.5  | 54.9  | 123   | 108.8 | 47.2  | 20.4  | 85.8  | 16.5 | 199<br>2 | 656.1  | 54.675      |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 1    | 23   | 31    | 85    | 119.1 | 97.8  | 91.2  | 67.2  | 57.2  | 53.7  | 112   | 1.5  | 199<br>3 | 739.7  | 61.64166667 |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 36.3 | 55.6 | 49.5  | 68.2  | 130.3 | 99    | 106.5 | 109.6 | 87    | 157.5 | 40    | 8    | 199<br>4 | 947.5  | 78.95833333 |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 5    | 10.5 | 55.6  | 67.6  | 50.1  | 98.8  | 87.8  | 52.1  | 52    | 60.7  | 44.1  | 61.4 | 199<br>5 | 645.7  | 53.80833333 |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 52.6 | 68.2 | 54.6  | 50.3  | 92.5  | 108.2 | 139.5 | 107.1 | 91.6  |       | 47.5  | 95.4 | 199<br>6 | 907.5  | 75.625      |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 63.8 | 15   | 20.6  | 46    | 67.8  | 63.7  | 154.1 | 92.5  | 50.5  | 93.7  | 72.7  | 19   | 199<br>7 | 759.4  | 63.28333333 |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 2.3  | 33.1 | 52.6  | 67.8  | 218   | 164.6 | 176.5 | 64    | 48.6  | 82.7  | 50.3  | 81.2 | 199<br>8 | 1041.7 | 86.80833333 |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 19.8 | 69.4 | 27.3  | 71.5  | 43.9  | 61.7  | 81.5  | 33.4  | 110.8 | 85.6  | 92.3  | 55.3 | 199<br>9 | 752.5  | 62.70833333 |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 20.5 | 48.7 | 88.4  | 40.4  | 97.4  | 108.6 | 113.4 | 129.7 | 102.3 | 82.6  | 58.5  | 33.5 | 200<br>0 | 924    | 77          |
| Ventaquemada | 108491<br>5 | 106254<br>1 |      | 19.4 | 46.1  | 30.4  | 85.1  | 87.6  | 57.6  | 138.7 | 103.2 |       | 46.9  | 38.9 | 200<br>1 | 653.9  | 54.49166667 |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 2.5  | 19.7 | 102.6 | 121.4 | 104.5 | 163   | 74.5  | 131.5 | 86.2  | 44.2  | 57.2  | 19.3 | 200<br>2 | 926.6  | 77.21666667 |
| Ventaquemada | 108491<br>5 | 106254<br>1 |      | 20.5 | 112.1 | 47.7  | 81.8  | 97.8  | 141.1 | 53.5  | 72.2  | 155.5 | 83.8  | 64.9 | 200<br>3 | 930.9  | 77.575      |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 32.2 | 10.3 | 24.8  | 136.9 | 166.7 | 135.2 | 98.1  | 114   | 87.6  | 141.6 | 75.1  | 37.1 | 200<br>4 | 1059.6 | 88.3        |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 11   | 16.7 | 35.4  | 68.9  | 137.5 | 76.1  | 85.6  | 105   | 91.3  | 182.1 | 105.2 | 11.6 | 200<br>5 | 926.4  | 77.2        |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 49.5 | 20.5 | 92.6  | 133.2 | 76.8  | 176.3 | 100.6 | 87.7  | 67.7  | 159.9 | 125.2 | 52.7 | 200<br>6 | 1142.7 | 95.225      |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 2    | 29.5 | 45.5  | 86.5  | 92.1  | 118.5 | 69.5  | 143.9 | 73.8  | 183.7 | 35.3  | 96   | 200<br>7 | 976.3  | 81.35833333 |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 40.8 | 16.8 | 70.8  | 47    | 116.7 | 103   | 97.5  | 107   | 70.5  | 72.5  | 233.2 | 39.4 | 200<br>8 | 1015.2 | 84.6        |





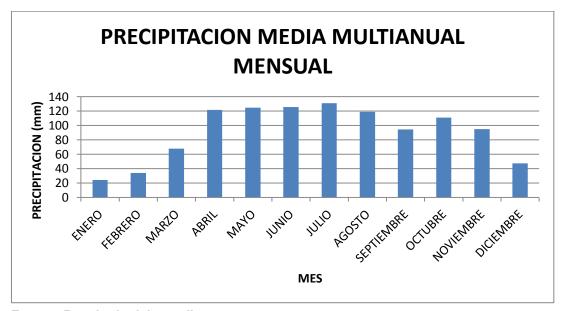
FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



| Ventaquemada | 108491<br>5 | 106254<br>1 | 64.1 | 34.5 | 89.1  | 88.2  | 58.2  | 94.8  | 87.2  | 91.1 | 33.8 | 82.9  | 62.3  | 6    | 200<br>9 | 792.2  | 66.01666667 |
|--------------|-------------|-------------|------|------|-------|-------|-------|-------|-------|------|------|-------|-------|------|----------|--------|-------------|
| Ventaquemada | 108491<br>5 | 106254<br>1 | 2    | 22.1 | 26    | 131.2 | 145.2 | 75.83 | 139.2 | 49.2 | 47.4 | 113.6 | 126.1 | 77.7 | 201<br>0 | 955.53 | 79.6275     |
| Ventaquemada | 108491<br>5 | 106254<br>1 | 14.1 | 53.4 | 116.8 | 204.2 | 231.2 |       |       |      |      |       |       |      | 201<br>1 | 619.7  | 51.64166667 |

Tabla 6. Precipitación media mensual por estación Fuente: Resultado del estudio.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 

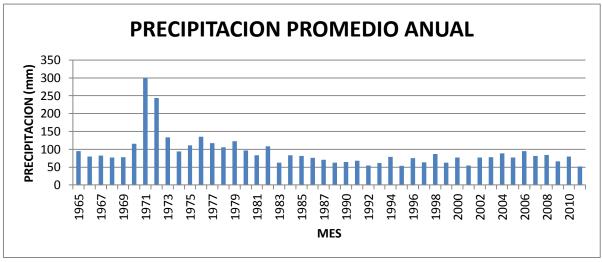


La precipitación media del área de estudio presenta un comportamiento bimodal, que muestra 8 periodos de precipitación alta comprendidos en los meses abrilmayo-junio-julio-agosto-septiembre-octubre y noviembre (Figura 4) y dos periodos de sequía comprendidos en los meses enero-febrero.

Figura 3. Precipitación media multianual mensual.



Fuente: Resultado del estudio






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Figura 4. Grafico de precipitacion media multianual.



Fuente: Resultado del estudio.

El comportamiento de la precipitación promedio anual, para los años 1965-1966-1967-1968-1969-1970 se encuentra valores que varían entre los 80-110 mm, en los años 1971-1972 se encuentran valores que varían entre los 300-200 mm y los años restantes se presentan valores que varían entre 140-50 mm.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR —CORPOCHIVOR

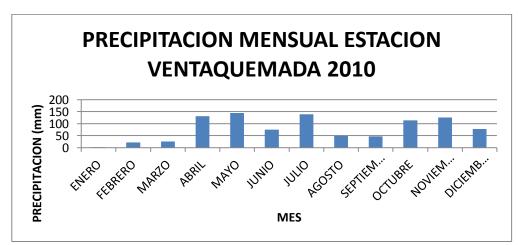



Figura 5. Gráfico de precipitación media multianual (2009)

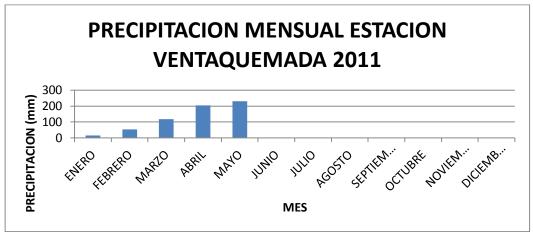


Fuente: Resultado del estudio.

Figura 6. Precipitación mensual estacion Ventaquemada (2010)



Fuente: Resultado del estudio.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR

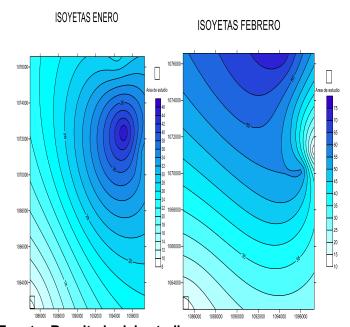


Figura 7. Precipitacion media mensual estacion Ventaguemada (2011)



Fuente: Resultado del estudio.

Para la realizacion de los mapas de Isoyetas se tuvo en cuenta con los datos correspondientes a las Estacion de Ventaquemada.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Figura 8. Isoyetas mes de enero y febrero



Fuente: Resultado del estudio

El comportamiento de la precipitación para el mes de Enero (figura 8) hacia la parte occidental se encuentran valores que varían entre los 16-20 mm. Hacia la parte nororiental se presentan valores que van desde los 30-46 mm. Hacia el sector suroeste 8-14 se presentan valores inferiores a 18 mm.

El comportamiento de la precipitación para el mes de Febrero (8) hacia la parte norte se encuentra valores que varían entre los 50-75 mm. Hacia la parte oriental se presentan valores que van desde los 30-40 mm. Hacia el sector suroeste se presentan valores inferiores a 25 mm.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



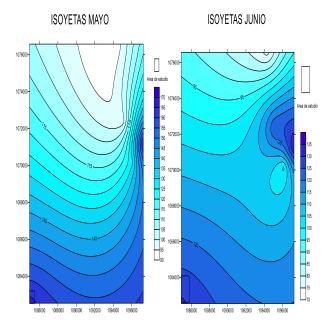
Figura 9. Isoyetas mes de marzo y abril



Fuente: Resultado del estudio.

El comportamiento de la precipitación para el mes de Marzo (Figura 9). Hacia la parte nororiental se presentan valores que van desde los 80-105 mm. Hacia la parte oriental se presentan valores 40-70 mm. Hacia la parte suroeste presenta valores inferiores a 30 mm.

El comportamiento de la precipitación para el mes de Abril (Figura 9) hacia la parte suroccidental se encuentran valores que varían entre los 180-240 mm. Hacia la parte nororiental se presentan valores que van desde los 160-100 mm. Hacia la parte oriental se presentan valores inferiores a 90 mm.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Figura 10. Isoyetas mes de mayo y junio



Fuente: Resultado del estudio.

El comportamiento de la precipitación para el mes de Mayo (Figura 10) hacia la parte suroccidental se encuentran valores que varían entre los 150-170 mm. Hacia la parte occidental se encuentran valores que varían entre los 140-100 mm. Hacia la parte norte disminuyen los valores a 90 mm.

El comportamiento de la precipitación para el mes de Junio (Figura 10) hacia la parte nororiental se encuentran valores que varían entre los 95-120 mm. Hacia la parte oriental se presentan valores entre los 120-135mm. Hacia la parte suroeste se presenta valores 120-135mm.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



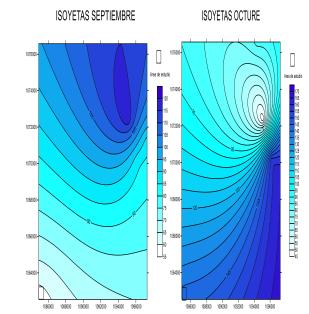
Figura 11. Isoyetas Julio Agosto



Fuente: Resultado del estudio.

El comportamiento de la precipitación para el mes de Julio (Figura 11) hacia la parte nororiental se encuentran valores que varían entre los 130-142mm. Hacia la parte noroeste se presentan valores que disminuyen desde los 90-110mm. Hacia la parte suroeste que se presenta la zona de estudio presenta una precipitación de 108-120mm.

El comportamiento de la precipitación para el mes de Agosto (Figura 11) hacia la parte nororiental en la parte centran se presenta una manifestación de precipitación muy concentrada que varía entre los valores 130-144mm. Hacia la parte oriental varia valores 108-116mm. Hacia la parte suroeste hay valores de precipitación 118-128mm.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



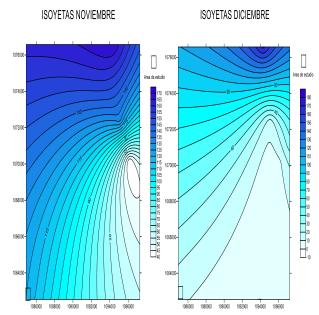
Figura 12. Isoyetas mes de septiembre octubre



Fuente: Resultado del estudio.

El comportamiento de la precipitación para el mes de Septiembre (Figura 12) hacia la parte nororiental se encuentran valores que varían entre los 105-120 mm. Hacia la parte suroeste se presentan valores de 55-90 mm.

El comportamiento de la precipitación para el mes de Octubre (Figura 12) hacia la parte nororiental en la parte centran presenta una manifestación de precipitación que varía entre los valores 45-90mm. Hacia la suroeste- este varían valores de 100-170mm.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Figura 13. Isoyetas mes de Noviembre y Diciembre



Fuente: Resultado del estudio.

El comportamiento de la precipitación para el mes de Noviembre (Figura 13) hacia la parte nororiental se encuentran valores 120-170 mm. Hacia la parte oriental centro varia valores 40-70mm. Hacia l parte suroeste valores 80-120mm.

El comportamiento de la precipitación para el mes de diciembre (Figura 13) hacia la parte nororiental hay valores de 90-180 y hacia la parte suroeste-oriente se encuentran valores que varían entre 0-80mm.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



# 2.5 CALCULO DE CAULDAL DE DISEÑO A PARTIR DE LA IDF

# Resultados

Ajuste de una serie de datos a la distribución Gumbel

# Serie de datos X:

| Χ                                                  |                                                                                                |
|----------------------------------------------------|------------------------------------------------------------------------------------------------|
| 138,0<br>163,0<br>155,0<br>166,0<br>182,0<br>176,0 |                                                                                                |
| 183,0<br>233,0<br>94,0<br>145,0<br>231,0<br>233,0  |                                                                                                |
|                                                    | 138,0<br>163,0<br>155,0<br>166,0<br>182,0<br>176,0<br>183,0<br>233,0<br>94,0<br>145,0<br>231,0 |

Cálculos del ajuste Smirnov Kolmogorov:

| m<br> | X     | P(X)   | G(Y) Ordinario | G(Y) Mom Lin | eal Delta |
|-------|-------|--------|----------------|--------------|-----------|
| 1     | 94,0  | 0,0769 | 0,0013         | 0,0033       | 0,0756    |
| 2     | 138,0 | 0,1538 | 0,1769         | 0,1985       | 0,0231    |
| 3     | 145,0 | 0,2308 | 0,2469         | 0,2663       | 0,0161    |
| 4     | 155,0 | 0,3077 | 0,3567         | 0,3703       | 0,0490    |
| 5     | 163,0 | 0,3846 | 0,4459         | 0,4539       | 0,0613    |
| 6     | 166,0 | 0,4615 | 0,4785         | 0,4844       | 0,0170    |
| 7     | 176,0 | 0,5385 | 0,5809         | 0,5802       | 0,0424    |
| 8     | 182,0 | 0,6154 | 0,6361         | 0,6323       | 0,0208    |
| 9     | 183,0 | 0,6923 | 0,6449         | 0,6406       | 0,0475    |





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



| 10<br>11<br>12 |                                                       |               | 0,9036<br>0,9090<br>0,9090                |                 |                  |            |
|----------------|-------------------------------------------------------|---------------|-------------------------------------------|-----------------|------------------|------------|
|                |                                                       |               |                                           |                 |                  |            |
| Ajuste con r   | nomentos ord                                          | inarios:      |                                           |                 |                  |            |
|                |                                                       |               | <br>· que el delta ta<br>nificación del 5 |                 | Los datos se aju | ıstan a la |
| Parámetros     | de la distribuc                                       | ción Gumbel:  | <del></del>                               |                 |                  |            |
| Parámetro d    | ntos ordinarios<br>de posición (µ)<br>de escala (alfa | = 156,0004    |                                           |                 |                  |            |
| Parámetro d    | ntos lineales:<br>de posición (µl<br>de escala (alfa  |               |                                           |                 |                  |            |
| Caudal de d    | liseño:                                               |               |                                           |                 |                  |            |
| El caudal de   | e diseño para                                         | un periodo de | retorno de 2 aŕ                           | ios, es 168,01  | m/seg            |            |
| El caudal de   | e diseño para                                         | un periodo de | retorno de 5 aŕ                           | ios, es 205,16  | m/seg            |            |
| El caudal de   | e diseño para                                         | un periodo de | retorno de 10 a                           | años, es 229,7  | 5 m/seg          |            |
| El caudal de   | e diseño para                                         | un periodo de | retorno de 25 a                           | años, es 260,82 | 2 m/seg          |            |
| El caudal de   | e diseño para                                         | un periodo de | retorno de 50                             | años, es 283,8  | 37 m/seg         |            |
| El caudal de   | e diseño para                                         | un periodo de | retorno de 75                             | años, es 297,2  | ?7 m/seg         |            |
| El caudal de   | e diseño para                                         | un periodo de | retorno de 100                            | años, es 306,   | 75 m/seg         |            |
| El coudol de   | diasão nara                                           |               | rotorno do EOO                            | años, es 359,   | 63 m/sog         |            |





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



# 2.6 ESTIMACIÓN DE LA EVAPOTRANSPIRACIÓN POTENCIAL (ETP)

# Formula de J. B. García y J.D. López.

Esta fórmula, de acuerdo a los resultados obtenidos en campo es aconsejable tenerla en cuenta para este tipo de estudios. Además ha sido evaluada, junto con la de L. Turc, como de las mejores para el cálculo de ETP en esta zona, según estudio comparativo de fórmulas de ETP potencial realizado por la CAR, en el que se evaluó el índice estacional, el coeficiente de correlación y su relación porcentual.

ETP= 
$$1,21*10^n*(1-0,01*HR) +0,21*T - 2,30 (mm)$$

Dónde:

ETP: Evapotranspiración

T: Temperatura media del aire en grados Celsius

HR: Humedad relativa media (%)

$$n = \frac{7,45 * T}{234,7 + T}$$

$$HR = \frac{HR: 8 \ Horas + HR: 14 \ Horas}{2}$$

Esta fórmula fue diseñada para las regiones situadas en un régimen tropical, dentro del rango latitudinal: 15°N -15°S. Con grado de exactitud del 88 %. Los cálculos efectuados en la aplicación de la formula se hicieron en un rango mensual con el objeto de observar su variación y evaluar la ETP promedio.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Se tomaron cuatro rangos de temperatura que varían de acuerdo a los periodos de precipitaciones, durante cada año.

Tabla 7. Rangos de temperatura Ventaquemada

|           | Temperatura |
|-----------|-------------|
|           | (°C)        |
| Periodo 1 | 8           |
| Periodo 2 | 12          |
| Periodo 3 | 16          |

Fuente: Resultado del estudio

El valor de la humedad relativa (HR) se toma del POT del municipio de Ventaquemada que corresponde al valor del 86%. De donde obtenemos:

Tabla 8. Valores de Evapotranspiración

| ETP1      | ETP2       | ETP3       |
|-----------|------------|------------|
| 1.4915674 | 2.98323453 | 4.64511402 |

Fuente: Resultado del estudio

# 2.7 ESTIMACIÓN DEL BALANCE HÍDRICO

La estimación del balance hídrico para la zona de estudio se realizó partiendo de los resultados del cálculo de precipitación, escorrentía y evapotranspiración media mensual multianual. Para poder calcular los valores de recarga potencial para las cuencas de los ríos Teatinos, Jenesano, esta recarga se estimó por medio del balance hídrico con base en los valores promedios mensuales de precipitación, evapotranspiración potencial y escorrentía calculada por el método de numero de





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



curva de escorrentía, el cual utiliza los parámetros de cobertura vegetal, Índice de infiltración del suelo, condición hidrogeológica.

Herramientas y métodos

- Los datos de infiltración obtenidos mediante la ponderación de los datos proporcionados por el IDEAM.
- Datos de precipitación obtenidos de las estaciones pluviométricas y de evaporación del IDEAM.

# 2.8 Metodología

La metodología utilizada para el cálculo de la recarga.

- Se realiza un procesamiento de los datos de las estaciones pluviométricas del IDEAM, generando tablas de precipitación media y mensual con el comportamiento multitemporal de las precipitaciones.
- Generación de tablas de evapotranspiración media con el comportamiento multitemporal de la evapotranspiración, a partir de los datos de temperatura del IDEAM, aplicando la **Formula de J. B. García y J.D. López.** para el cálculo de la evapotranspiración.
- Se calcula el número de curva para cada categoría con características iguales de cobertura, velocidad de infiltración, condición hidrológica y uso del suelo.
- Con la ecuación propuesta por el Servicio de Conservación de Suelos de los Estados Unidos de Norteamérica se calcula la escorrentía para cada categoría y microcuenca, que utiliza el número de curva de escorrentía y la precipitación media mensual como variables.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



- Se realiza un balance hídrico, con los datos de precipitación, escorrentía, evapotranspiración para encontrar la cantidad de recarga, siguiendo las normas del IDEAM.
- Cálculo del balance hídrico.

El método consiste en hacer un balance para un periodo de tiempo determinado.

El balance se puede expresar de la siguiente forma:

 $P = ESC + ETR + / - \Delta S + REC$ 

P= precipitación

ESC = escorrentía

ETR= evapotranspiración

ΔS= cambios en el contenido de humedad del suelo

**REC=** recarga o infiltración potencial

• Calculo de la infiltración, consiste en calcular la infiltración a partir de la diferencia de los factores hidrológicos del balance: precipitación, evapotranspiración y escorrentía, aplicando la siguiente formula:

I = P - ETR - R

Dónde:

**P** = precipitación media por el método de las Isoyetas.

**ETR** = evapotranspiración real.

**R** = escorrentía calculada por el método de numero de curva.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



# 2.9 RESULTADOS OBTENIDOS

Los valores obtenidos dentro del balance hídrico se tomaron en base a los tipos de suelo (ML, CL, CH) se encuentran resumidos en la Tabla 9. .

Tabla 9. Calculo de infiltración

| Año  | P         | R          | I          |
|------|-----------|------------|------------|
| 1965 | 94.916667 | 23.6786246 | 69.7464747 |
| 1966 | 79.333333 | 15.3597068 | 62.4820591 |
| 1967 | 82.666667 | 17.0375502 | 64.1375491 |
| 1968 | 76.75     | 14.1012189 | 61.1572137 |
| 1969 | 77.666667 | 14.5434823 | 61.631617  |
| 1970 | 115.58333 | 36.2967464 | 77.7950195 |
| 1971 | 300.33583 | 185.591004 | 113.253262 |
| 1972 | 243.83333 | 135.942068 | 106.399698 |
| 1973 | 133       | 48.0173841 | 83.4910485 |
| 1974 | 94.333333 | 23.3467253 | 69.4950406 |
| 1975 | 111.08333 | 33.4179401 | 76.1738258 |
| 1976 | 135.58333 | 49.8261805 | 84.2655854 |
| 1977 | 116.91667 | 37.1623711 | 78.2627282 |
| 1978 | 105.75    | 30.0958091 | 74.1626235 |
| 1979 | 122.91667 | 41.1254969 | 80.2996024 |
| 1980 | 96.75     | 24.7312176 | 70.527215  |
| 1981 | 82.966667 | 17.191441  | 64.2836582 |
| 1982 | 107.93333 | 31.4436081 | 74.9981578 |
| 1983 | 62.966667 | 8.0766698  | 53.3984295 |
| 1984 | 83.391667 | 17.410251  | 64.4898483 |
| 1985 | 81.908333 | 16.6506432 | 63.7661227 |
| 1986 | 76.141667 | 13.8103721 | 60.8397272 |
| 1987 | 70.6      | 11.2623544 | 57.8460782 |
| 1989 | 63.083333 | 8.12231354 | 53.4694524 |
| 1990 | 64.791667 | 8.80186784 | 54.4982314 |
| 1991 | 67.766667 | 10.0339432 | 56.2411561 |
| 1992 | 54.675    | 5.09904604 | 48.0843866 |
| 1993 | 61.641667 | 7.56527895 | 52.5848203 |





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



| 1994 | 78.958333 | 15.1747104 | 62.2920556 |
|------|-----------|------------|------------|
| 1995 | 53.808333 | 4.81991353 | 47.4968524 |
| 1996 | 75.625    | 13.5650339 | 60.5683987 |
| 1997 | 63.283333 | 8.20078952 | 53.5909764 |
| 1998 | 86.808333 | 19.2025667 | 66.1141992 |
| 1999 | 62.708333 | 7.97595381 | 53.2408121 |
| 2000 | 77        | 14.2213614 | 61.2870712 |
| 2001 | 54.491667 | 5.03946521 | 47.9606341 |
| 2002 | 77.216667 | 14.3257737 | 61.3993256 |
| 2003 | 77.575    | 14.4990412 | 61.5843914 |
| 2004 | 88.3      | 20.0031029 | 66.8053297 |
| 2005 | 77.2      | 14.3177325 | 61.3907001 |
| 2006 | 95.225    | 23.8546499 | 69.8787827 |
| 2007 | 81.358333 | 16.3719239 | 63.4948421 |
| 2008 | 84.6      | 18.0374164 | 65.0710162 |
| 2009 | 66.016667 | 9.30183524 | 55.223264  |
| 2010 | 79.6275   | 15.5053674 | 62.6305652 |
| 2011 | 51.641667 | 4.1505844  | 45.9995149 |

Fuente: Resultado del estudio





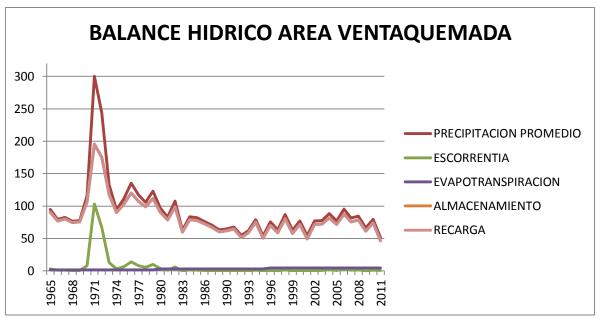
FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



| AÑO                       | 1965            | 1966            | 1967            | 1968            | 1969            | 1970            | 1971            | 1972           | 1973            | 1974            | 1975            | 1976           | 1977            | 1978            | 1979            |         |
|---------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|-----------------|-----------------|-----------------|----------------|-----------------|-----------------|-----------------|---------|
| PRECIPITACION<br>PROMEDIO | 94.916666       | 79.333333       | 82.666666       | 76.75           | 77.666666       | 115.58333       | 300.33583       | 243.8333       | 133             | 94.333333       | 111.08333       | 135.5833       | 116.91666       | 105.75          | 122.91666       |         |
| ESCORRENTIA               | 3.1393830       | 0.9074792       | 1.2792039       | 0.6611642       | 0.7443270       | 7.8630112       | 103.44905       | 67.1105        | 13.185557       | 3.0339594       | 6.6783413       | 14.06847       | 8.2297120       | 5.3834021       | 9.9657834       |         |
| EVAPOTRANSPIRAC<br>ION    | 1.4915674       | 1.4915674       | 1.4915674       | 1.4915674       | 1.4915674       | 1.4915674       | 1.4915674       | 1.491567       | 1.4915674       | 1.4915674       | 1.4915674       | 1.491567       | 1.4915674       | 1.4915674       | 1.4915674       |         |
| DELTA                     | 90.285716       | 76.934286       | 79.895895       | 74.597268       | 75.430772       | 106.22875       | 195.39520       | 175.2312       | 118.32287       | 89.807806       | 102.91342       | 120.0232       | 107.19538       | 98.875030       | 111.45931       |         |
| ALMACENAMIENTO            | 90.285716       | 76.934286       | 79.895895       | 74.597268       | 75.430772       | 106.22875       | 195.39520       | 175.2312       | 118.32287       | 89.807806       | 102.91342       | 120.0232       | 107.19538       | 98.875030       | 111.45931       |         |
| DEFICIT                   |                 |                 |                 |                 |                 |                 |                 |                |                 |                 |                 |                |                 |                 |                 |         |
| RECARGA                   | 90.285716       | 76.934286       | 79.895895       | 74.597268       | 75.430772       | 106.22875       | 195.39520       | 175.2316       | 118.32287       | 89.807806       | 102.91342       | 120.0232       | 107.19538       | 98.875030       | 111.45931       |         |
| 480                       | 1000            | 4004            | 1003            | 4003            | 1004            | 4005            | 1005            | 1007           | 1000            | 1000            | 4004            | 1003           | 1003            | 1004            | 4005            | 1000    |
| AÑO                       | 1980            | 1981            | 1982            | 1983            | 1984            | 1985            | 1986            | 1987           | 1989            | 1990            | 1991            | 1992           | 1993            | 1994            | 1995            | 1996    |
| PRECIPITACION<br>PROMEDIO | 96.75           | 82.966666       | 107.93333       | 62.966666       | 83.391666       | 81.908333       | 76.141666       | 70.6           | 63.083333       | 64.791666       | 67.766666       | 54.675         | 61.641666       | 78.958333       | 53.808333       | 75.625  |
| ESCORRENTIA               | 3.4812323       | 1.3155821       | 5.8989015       | 0.0024749       | 1.3679341       | 1.1893833       | 0.6085739       | 0.227113       | 0.0031753       | 0.0233277       | 0.1019768       | 0.181386       | 0.0006451       | 0.8694350       | 0.2269218       | 0.56554 |
| EVAPOTRANSPIRAC<br>ION    | 2.9832345       | 2.9832345       | 2.9832345       | 2.9832345       | 2.9832345       | 2.9832343       | 2.9832345       | 2.983234       | 2.9832345       | 2.9832345       | 2.9832345       | 2.983234       | 2.9832345       | 2.9832343       | 2.9832345       | 4.64511 |
| DELTA                     | 90.285533       | 78.667849       | 99.051197       | 59.980957       | 79.040498       | 77.735715       | 72.549858       | 67.38965       | 60.096923       | 61.785104       | 64.681455       | 51.51037       | 58.657786       | 75.105663       | 50.598176       | 70.4143 |
| ALMACENAMIENTO            | 90.285533       | 78.667849       | 99.051197       | 59.980957       | 79.040498       | 77.735715       | 72.549858       | 67.38965       | 60.096923       | 61.785104       | 64.681455       | 51.51037       | 58.657786       | 75.105663       | 50.598176       | 70.4143 |
| DEFICIT                   |                 |                 |                 |                 |                 |                 |                 |                |                 |                 |                 |                |                 |                 |                 |         |
| RECARGA                   | 90.285533       | 78.667849       | 99.051197       | 59.980957       | 79.040498       | 77.735715       | 72.549858       | 67.38965       | 60.096923       | 61.785104       | 64.681455       | 51.51037       | 58.657786       | 75.105663       | 50.598176       | 70.4143 |
| AÑO                       | 1997            | 1998            | 1999            | 2000            | 2001            | 2002            | 2003            | 2004           | 2005            | 2006            | 2007            | 2008           | 2009            | 2010            | 2011            |         |
| PRECIPITACION<br>PROMEDIO | 63.283333       | 86.808333       | 62.708333       | 77              | 54.491666       | 77.216666       | 77.575          | 88.3           | 77.2            | 95.225          | 81.358333       | 84.6           | 66.016666<br>67 | 79.6275         | 51.641666<br>67 |         |
| ESCORRENTIA               | 0.0045780       | 1.8231407       | 0.0012335       | 0.6833792       | 0.1905838       | 0.7029151       | 0.7357998       | 2.040727       | 0.7014031       | 3.1957625       | 1.1261627       | 1.521975       | 0.0490738       | 0.9378621       | 0.3638182       |         |
| EVAPOTRANSPIRAC<br>ION    | 4.6451140       | 4.6451140       | 4.6451140       | 4.6451140       | 4.6451140       | 4.6451140       | 4.6451140       | 4.645114       | 4.6451140       | 4.6451140       | 4.6451140       | 4.645114       | 4.6451140       | 4.6451140       | 4.6451140       |         |
| DELTA                     | 58.633641       | 80.340078       | 58.061985       | 71.671506       | 49.655968       | 71.868637       | 72.194086       | 81.61415       | 71.853482       | 87.384123       | 75.587056       | 78.43291       | 61.322478       | 74.044523       | 46.632734       |         |
| ALMACENAMIENTO            | 58.633641       | 80.340078       | 58.061985       | 71.671506       | 49.655968       | 71.868637       | 72.194086       | 81.61415       | 71.853482       | 87.384123       | 75.587056       | 78.43291       | 61.322478       | 74.044523       | 46.632734       |         |
| DEFICIT                   |                 |                 |                 |                 |                 |                 |                 |                |                 |                 |                 |                |                 |                 |                 |         |
| RECARGA                   | 58.633641<br>26 | 80.340078<br>59 | 58.061985<br>76 | 71.671506<br>73 | 49.655968<br>81 | 71.868637<br>46 | 72.194086<br>18 | 81.61415<br>82 | 71.853482<br>87 | 87.384123<br>47 | 75.587056<br>59 | 78.43291<br>07 | 61.322478<br>85 | 74.044523<br>87 | 46.632734<br>44 |         |

Tabla 10. Estimación del Balance Hídrico

Fuente: Resultado del estudio.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Figura 14. Comportamiento de las Curvas del Balance Hídrico



Fuente: Resultado del estudio.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



# 2.10 MORFOMETRÍA DE LA CUENCA

Los parámetros morfométricos de una cuenca permiten establecer las características geométricas de la misma, la cual determina en alto grado la susceptibilidad que ésta tiene para presentar, en sucesos eventuales o con el transcurso del tiempo, inundaciones y Avenidas Torrenciales; por ejemplo: una microcuenca alargada muestra una amenaza baja por avenidas torrenciales, porque permite disipar con facilidad una precipitación abundante de corta duración, lo inverso sucede con una microcuenca redonda. Para objeto de este estudio, se analizarán únicamente las Avenidas Torrenciales, ya que por las características topográficas de la región, es poco posible que se presentes inundaciones propiamente dichas. Los parámetros morfométricos determinados para todas las cuencas de la jurisdicción se enuncian a continuación:

- Área de la Cuenca (A)
- Perímetro de la cuenca (P)
- Coeficiente de compacidad (C).
- Coeficiente de redondez (K).
- Densidad de drenaje (Dd)
- Pendiente media de la corriente (IC)

El área de la cuenca se obtiene de acuerdo al promedio de las mediciones realizadas con el Planímetro, AutoCad, o cualquier otro método para su medición, está limitada por divisorias de aguas, hasta la desembocadura del río o quebrada y está dada en Km².





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Perímetro de la cuenca (P)

Longitud medida del contorno de la cuenca, es decir por las divisorias de aguas que la limitan, y está dada en Km.

Coeficiente de compacidad (C). Esta variable compara el perímetro de la cuenca con la longitud o perímetro asociado.

$$C = \frac{P}{2\sqrt{A/\pi}}$$

C= 1: Cuenca de forma compacta redonda.

C= 1.20: Cuenca semicompacta semioxal redonda

C= 1.50: Cuenca semicompacta oblonga

C >1: Cuenca semicompacta rectángulo – oblonga

Coeficiente de redondez (K). Relaciona la longitud de la cuenca, con el área de la misma.

$$K = \frac{Lb^2}{4A}$$

K = 1: RedondaK > 1: SemiredondaK < 1: Irregular</li>

# i. DENSIDAD DE DRENAJE (Dd)

Es la medición de la longitud acumulada de todas las corrientes (Ld) y el área (A)

$$Dd = \frac{Ld}{A}$$





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Dd < 0.5 : Baja Dd = 0.5 : Media Dd > 1 : Alta

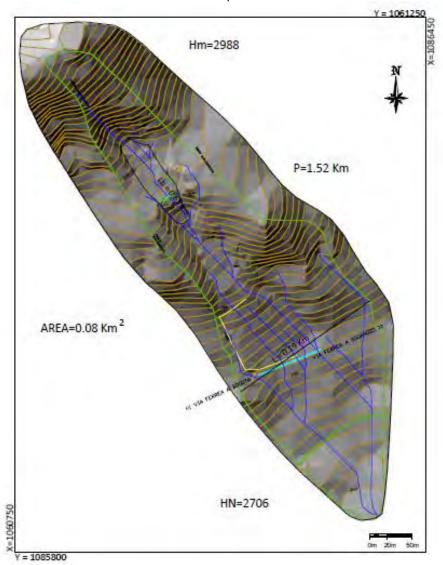
# ii. TIEMPO DE CONCENTRACIÓN (TC)

Es el tiempo que gasta una gota de agua en recorrer el sitio más lejano de la cuenca a la desembocadura del cauce principal.

$$Tc = 0.0663 \left(\frac{Lb}{\sqrt{A}}\right)^{0.07}$$

Con base al análisis anterior sus parámetros morfométricos indican las microcuencas analizadas presentan de media a alta susceptibilidad a la torrencialidad, ver tabla de resultados.

A continuación resumimos en una tabla resumen el resultado de los cálculos morfométricos a la microcuenca de Ventaquemada analizadas para el presente estudio.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Figura 15. Ilustrativa de la microcuenca Ventaquemada



Fuente: Resultado del estudio





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Tabla 11. Valores de parámetros morfométricos para la microcuenca.

| NOMBRE<br>MICROCUENCA                                                   | Área de la<br>Cuenca en<br>Km (A)  | Perímetro de<br>la cuenca Km<br>(P)                     | longitud de la<br>cuenca Km (Lb) | el ancho mayor Km<br>(I)                    | longitud<br>acumulada<br>de todas las<br>corrientes<br>Km (Ld) | longitud acumulada<br>de todas las<br>corrientes Km (Ld) |
|-------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------|----------------------------------|---------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|
| Ventaquemada                                                            | 0,08                               | 1,52                                                    | 0,67                             | 0,19                                        | 2,16                                                           | 2988                                                     |
| Cota Mínima de<br>la Cuenca(Hn)                                         | Diferencia<br>de Altura<br>Km (Hc) | Razón de<br>Relieve (Rr)                                | Número de<br>Corrientes(Nc)      | Frecuencia de<br>Corrientes<br>(Cauces/Km2) | Pendiente<br>media de<br>Corriente Ic<br>% (Ic)                | Índice de<br>Alargamiento (la)                           |
| 2706                                                                    | 0,28                               | 0,42                                                    | 2                                | 25,59                                       | 42,22                                                          | 3,47                                                     |
| COEFICIENTE DE<br>COMPACIDAD (C). FORMA Y<br>SUSCEPTIBILIDAD            |                                    | COEFICIENTE DE REDONDEZ (K).<br>FORMA Y SUSCEPTIBILIDAD |                                  | DENSIDAD DE DRENAJE (Dd)                    |                                                                | TIEMPO DE<br>CONCENTRACIÓN<br>en horas (TC)              |
| 1,43                                                                    | oblonga                            | 1,43                                                    | Semiredonda                      | 27,64                                       | Densidad<br>Muy Alta                                           | 0,07                                                     |
| AMPLITUD DE LA CUENCA (W).<br>TIEMPO DE CONCENTRACIÓN<br>DE ESCORRENTÍA |                                    | ELONGACIÓN DE LA CUENCA<br>(RE). FORMA                  |                                  | ÍNDICE DE HOMOGENEIDAD (IH).<br>FORMA       |                                                                | SUSCEPTIBILIDAD                                          |
| 0,12                                                                    | crítico                            | 0,47                                                    | ALARGADA                         | 0,61                                        | Irregular                                                      | 4                                                        |

Fuente: Resultado del estudio

De la anterior tabla se concluye que por sus morfometría la microcuenca presenta susceptibilidad alta a la torrencialidad.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



# 3 GEOLOGIA

EL estudio geológico del municipio es necesario tener un conocimiento general de la estructura y composición del material rocoso en el subsuelo. Este conocimiento permite establecer con que se cuenta en material de recursos minerales, que procesos geológicos han actuado en el pasado y cuáles pueden ser fuente de amenazas geológicas del municipio.

# 3.1 GEOLOGÍA HISTÓRICA

La historia geológica del área que cubre el municipio, está directamente relacionada con la historia geológica de la cordillera oriental involucrando en esta forma áreas de varios municipios, pues los eventos ocurridos hace millones de años ocuparon grandes extensiones de tierra que dejaron como consecuencia las actuales características topográficas, estructurales y formaciones existentes. Para el municipio se observa rocas que datan del cretácico hasta los depósitos cuaternarios.

En los inicio del cretácico comienza la formación de la cordillera oriental, por una gran subsidencia y posterior sedimentación del material detrítico. Las rocas depositadas hasta el momento sufren su primera fase de plegamiento leve, originando flexuras amplias a lo largo del Geosinclinal como ocurrió con la sedimentación de las formaciones Churuvita (Ksch), Conejo (Kscn) y Grupo Guadalupe.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



# 3.2 GEOLOGÍA REGIONAL

La geología regional es común para el área conocida como Altiplano Cundiboyacense, la cual se aprecia en el paisaje y en los cortes de las vías que comunican a la capital de país con la ciudad de Tunja, además de las vías que unen a Tunja con los municipios aledaños, las cuales nos indican claramente la complejidad del material, la gran cantidad de pliegues existentes y fallas locales que componen la Cordillera Oriental de los Andes Colombianos. La deformación a que fueron sometidas estas rocas produjo los principales rasgos de las estructuras en la región:

- Amplios sinclinales en cuyo núcleo se encuentra la secuencia terciaria.
- Anticlinales estrechos alargados y tectónicamente complejos.
- Asimetría de los pliegues. En casi todos los sinclinales, el flanco oriental (Occidentales de los Anticlinales) es abrupto, mientras que el occidente es suave.
- Fallas longitudinales inversas, en la mayoría de las cuales el bloque yacente es el occidental y se disponen paralelas a los pliegues.
- Falla miento de rumbo transversal, el cual corta las estructuras.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



 Presencia de estructuras de colapso, originadas por gravedad, son etapas finales de fuertes plegamientos, cuando las rocas alcanzan posiciones de intensidad.

# 3.3 GEOLOGIA LOCAL

# 3.3.1 Estratigrafía

Las rocas que afloran en la zona de estudio son de origen sedimentario con edades entre en cretáceo, Terciario y depósitos cuaternarios recientes de tipo coluvial y aluvial.

# 3.3.2 Formación conejo (Kscn)

Descripción de la Sección Tipo. Nombre dado por Renzoni (1967), quien estudió la sucesión ubicada por el carreteable Oicatá – Chivatá, Vereda San Rafael, localidad de Ponzuela bordeando el Alto del Conejo. Esta Formación tiene un espesor que oscila entre 265 y 370 m y presenta intercalaciones de arenisca de grano medio a grueso, con arcillolitas grises y lutitas negras en la base; le siguen tres bancos de arcillolitas grises que aumentan su espesor hacia el techo, intercalados con bancos de areniscas blancas de grano medio, compactas. A continuación se encuentran areniscas de color café intercaladas con limolitas grises; hacia el techo se encuentra un banco de arenisca blanca de grano grueso a fino con concreciones; en la parte superior del techo puede presentar esporádicos niveles de caliza.<sup>1</sup>

Descripción de la sección estudiada. Está constituida Esta formación presenta una orientación N48W/83 NE, litológicamente está constituida por arcillolitas y

\_

<sup>&</sup>lt;sup>1</sup> RENZONI,G.- Geología del cuadrángulo J-12 Serv.Geol.Nal., Inf. 1546:36p. Bogotá.1969





# MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE FONDO DE COMPENSACIÓN AMBIENTAL FCA

CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



areniscas en donde predominan las arcillolitas observándose intercalaciones de lodolitas y capas de areniscas.

Se puede decir que la Formación Conejo fue depositada en un medio marino, cuyos sedimentos corresponden a una facie areno arcillosa desarrollada en un ambiente propio de las zonas sublitorales bastante someras, su edad comprende desde el Coniaciano Superior al Santoniano<sup>2</sup>. Tal como se muestra en la siguiente fotografía

Fotografía 2. Afloramiento Formación Conejo (Kscn).



Fuente: Registro Fotográfico.

<sup>&</sup>lt;sup>2</sup> RENZONI, G., ROSAS, H., ETAYO, F.- Mapa Geológico de la Plancha 191-Tunja. Escala 1:100.000.Serv.Geol,Nal.,Bogota.1967





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



# 3.3.3 Formación Plaeners (Kg2).

Descripción de la Sección Tipo. Formación que pertenece a la subdivisión del Grupo Guadalupe, definida así por Hubach (1931) y redefinida por Pérez y Salazar (1978). La sección tipo se encuentra ubicada en el Carreteable al Cerro El Cable al norte de Usaquén, entre las quebradas Rosales y La Vieja, se puede hallar con espesores que oscilan entre 50 y 160 m. Litológicamente presenta delgadas capas de porcelanitas y cherts ricos en foraminíferos, vértebras y escamas de peces; también presenta esporádicos niveles de fosforita con una parte intermedia de arcillolitas y areniscas<sup>3</sup>

Descripción de la sección estudiada. Esta formación presenta una orientación N86E/66SE, litológicamente está constituida por arcillolitas grises y limolitas de grano muy fino.

Ambiente de Depositación. La formación es de ambiente marino como lo indica la fauna típica en toda la sección. Tal como se muestra en la siguiente fotografía.

Fotografía 3. Formacion Plaeners(Kg2).



Fuente: Registro Fotográfico.

<sup>&</sup>lt;sup>3</sup> HUBACH,E.-Contribucion alas unidades estratigraficasde Colombia .Inst.Geol.Nal.,Inf.1212.Inedito 1951.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



# 3.3.4 Formación Labor y Tierna (Kg1).

Descripción de la Sección Tipo. Nombre dado por Hubach (1931) a una secuencia encontrada en la carretera Ramiriqui – Boyacá, compuesta por areniscas cuarzosas, de grano fino a medio, compacto y permeable. Sobre este miembro se encuentra una sucesión de limolitas y arcillolitas silíceas grises claras bien estratificadas; luego se encuentran unas areniscas cuarzosas de grano fino a medio. Esta Formación posee un espesor aproximado de 226 m. <sup>4</sup>

Descripción de la Sección Estudiada. En el área de estudio se encuentra una secuencia compuesta por bancos potentes de areniscas cuarzosas estratificadas y algo diaclasadas, Esta formación presenta una orientación N35E/20SE, litológicamente está conformada por areniscas cuarzosas estratificadas con presencia de diaclasas, con alto grado de meteorización. Como se puede observar en la siguiente fotografía.

<sup>&</sup>lt;sup>4</sup> RENZONI, G., OSPINA, C.- Mapa geológico del Cuadrángulo J-12 Tunja Escala 1:100000. En: Serv.Geol.Nal.Inf.1546.Bogota, 1969.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



Fotografía 4. Formación Labor y tierna (Kg1)



**Fuente: Registro Fotografico** 

# 3.3.5 Depósitos cuaternarios

Estos depósitos son de edades recientes de materiales poco consolidados y en algunos casos no Consolidados, por lo general están formados por arcillas, limos cantos redondeados y bloques angulares de areniscas.

# 3.3.5.1 Cuaternario Glaciar (Qg).

Tipo de depósitos producto de la actividad de antiguos Glaciares que Transportaron grandes cantidades de material bajo la influencia de la gravedad. Se caracteriza por que presenta grandes bloques de areniscas compactas, angulosos, muchos de los cuales presentan en su superficie evidencias de desprendimientos bruscos y arrastre, posiblemente de la Formación Labor y Tierna. Este tipo de depósitos se localizan al norte del municipio, formando parte del páramo de Rabanal.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



## 3.3.5.2 Cuaternario Fluvioglaciar (Qfg).

Material desprendido y arrancado por glaciares, pero este a diferencia del anterior es transportado por corrientes de agua, por tal razón presenta en los bloques rasgos característicos de arrastre como lo es la menor angularidad y los rasgos de desprendimiento se observan más suavizados. Las características litológicas del material corresponden a bloques de areniscas bastante duras y compactas, provenientes de las Formaciones Labor – Tierna, y posiblemente Conejo. Este tipo de depósito se observa en el sector donde se encuentra localizado el casco urbano principalmente.

## 3.3.5.3 Cuaternario Aluvial (Qal).

Son todos aquellos depósitos de material que han sido transportados por aguas de escorrentía o encausadas e impulsadas por gravedad. Es el cuaternario de mayor extensión en el Municipio; está localizado entre las Veredas de El Carmen y El Boquerón, siendo depositado por el Río Albarracín. Otro depósito de este tipo se localiza en la Vereda Montoya en la parte más baja de la quebrada Cortaderal.

## 3.3.5.4 Cuaternario Coluvial (Qc).

Depósitos de material heterogéneo con variación en el tamaño de las partículas, dispuestas muy arbitrariamente. Se localizan en la base de laderas de montañas, colinas, lomas y escarpes. Uno de estos depósitos se localiza en la vereda. Se localiza en la parte alta, media del deslizamiento, dichos depósitos provienen de los fenómenos de remoción en masa (FRM).<sup>5</sup> Como se observa en la siguiente fotografía.

<sup>&</sup>lt;sup>5</sup> RENZONI, G., OSPINA, C.- Mapa geológico del Cuadrángulo J-12 Tunja Escala 1:100000. En: Serv.Geol.Nal.Inf.1546.Bogota, 1969.





## MINISTERIO DE AMBIENTE Y DESARROLLO

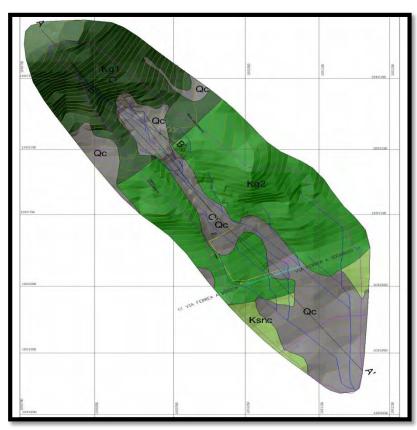
SOSTENIBLE
FONDO DE COMPENSACIÓN AMBIENTAL FCA
CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR
-CORPOCHIVOR

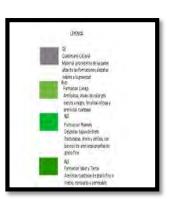


Fotografía 5. Depósitos de material heterogéneo



Fuente: Registro Fotográfico.




FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Figura 16. Mapa geologico





Fuente: Resultado del estudio





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



## 4 GEOMORFOLOGÍA

La geomorfología describe las formas del relieve, tanto estructural como superficial, y estudia su origen y evolución.

En este numeral, se realiza un análisis de las fotografías aéreas y se describen los procesos morfodinámicos cartografiados en la zona de estudio y las unidades geomorfológicas establecidas de acuerdo a las necesidades de los análisis de estabilidad y amenaza por fenómenos de remoción en masa (FRM).

Igualmente, se aclaran los criterios utilizados para definir las unidades geomorfológicas. Como resultado final, se elaboró el Plano geomorfológico del área de estudio y las fichas de los Inventarios de los procesos.

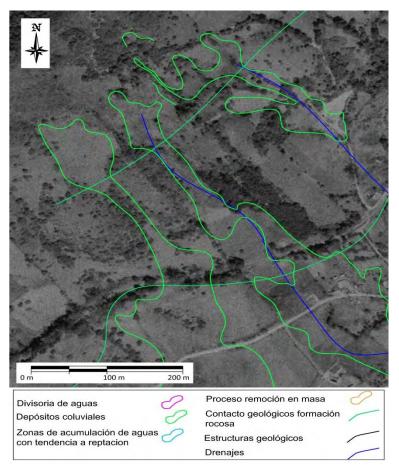
## 4.1 ANÁLISIS FOTOGEOLÓGICO

Revisión y fotointerpretación de fotografías aéreas del área de estudio, para determinar las Unidades Geológicas Superficiales (unidades de roca, suelos residuales y transportados) y geoformas asociadas a éstas, así como los procesos morfo dinámicos y rasgos estructurales, entre otros.

En el análisis se define el área de influencia del proceso dada por las divisorias de aguas, se identifica los materiales duros y blandos, las zonas de infiltración, acumulación de aguas.

Como conclusión, se puede afirmar que las condiciones naturales o iníciales del terreno muestran dinámicas de acumulación de material y estancamiento de aguas en dichas áreas. Los problemas de inestabilidad que se presentan en base






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



a esta dinámica, disparada por lluvias intensas y la intervención antrópica en el área por cortes en la vía y desforestación.

Figura 17. Fotografías pertenecientes al vuelo 2804-43,44 tomadas por el IGAC, durante los años 90.



Fuente: Resultado del estudio.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



## 4.2 PROCESOS MORFODINÁMICOS

En el Plano de Geomorfología se localizaron los diferentes procesos morfodinámicos observados en la zona. A continuación, se describe en forma general las características de estos de acuerdo a la clasificación de Varnes. Las Fichas de Inventario de procesos se presentan en el anexo de estas.

## 4.2.1 Los deslizamientos compuestos

## 4.2.1.1 Deslizamientos compuesto 1

Se clasifica el proceso como deslizamiento compuesto ya que su control estructural resultando en superficies de ruptura irregulares incluye movimiento rotacional a lo largo de un escarpe principal seguido de un desplazamiento a lo largo de una superficie de debilidad casi horizontal, paralela a la estratificación, el proceso es activo remontante, y su velocidad es lenta, presenta un área aproximada de 3967,6 m² con una profundidad promedio de 4 m, las causas posibles pueden ser, por material plástico débil detonado por lluvias, por el mal manejo del suelo relacionado con matorrales, cultivos, uso agrícola, ganadería; los daños presentes en el área de las viviendas, áreas agrícolas y para pastoreo, erosión y deforestación son producto del desarrollo del deslizamiento. Se presenta entre la Formación Labor y Tierna (Kg2), Formación Conejo (Kscn),Formación Plaeners (Kg2) y el Deposito Coluvial (Qc).(ver figura 18).






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR

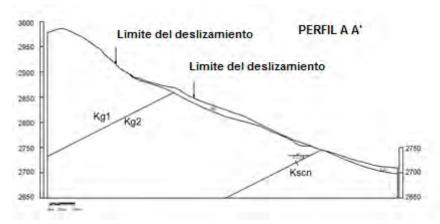


Figura 18. Esquema del movimiento compuesto



Fuente: Resultado del estudio.

En el perfil (Ver Figura 19) se ilustra el cuerpo del proceso y la geoforma en la cual se encuentra, siendo favorable a su movimiento.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



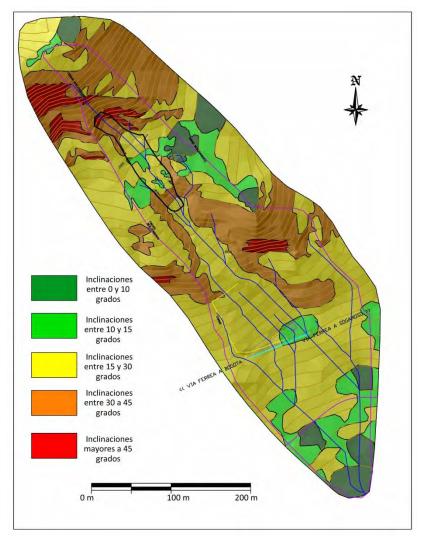
Figura 19. Esquema del movimiento, perfil movimiento compuesto



Fuente: Resultado del estudio.

## 4.3 INCLINACIÓN DE LAS PENDIENTES

A partir de un modelo digital de terreno generado tras la digitalización de curvas de nivel a una escala 1:25.000, se generó el mapa de pendientes con seis clases para el área de estudio. Los valores de susceptibilidad de este parámetro o variable son presentados en la Figura 20.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Figura 20. Imagen del Mapa de inclinación de las pendientes.



Fuente: Resultado del estudio.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



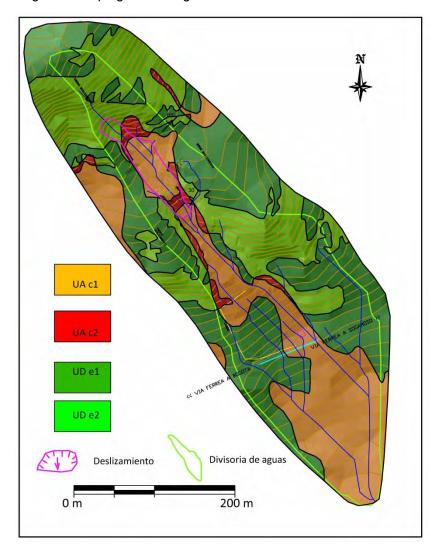
Tabla 12. Clasificación de las pendientes.

| CLASIFICACIÓN DE LAS PENDIENTES |         |  |  |
|---------------------------------|---------|--|--|
| UNIDAD CARTOGRÁFICA             | GRADOS  |  |  |
| Suavemente inclinada            | 0-10    |  |  |
| Inclinada                       | 10 15   |  |  |
| Abrupta                         | 15-30   |  |  |
| Escarpada                       | 30 - 45 |  |  |
| Muy Escarpada                   | > 45    |  |  |

Fuente: Resultado del estudio.

## 4.4 UNIDADES GEOMORFOLÓGICAS

Teniendo en cuenta, las necesidades de los análisis de estabilidad y amenaza por fenómenos de remoción en masa (FRM) y la relación de estas con los procesos de inestabilidad, se delimitaron cuatro (4) unidades geomorfológicas de carácter local.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Figura 21. Imagen del Mapa geomorfológico.



Fuente: Resultado del estudio.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



## 4.4.1 Geoformas de Origen Denudacional.

Dentro de las unidades de origen Denudativo en la zona se evidenciaron las siguientes unidades

## 4.4.1.1 Unidad agradacional con inclinaciones entre 0 y 30 grados en ladera en contra pendiente (UA c1)

Dicha unidad está compuesta por depósitos coluviales, los cuales yacen sobre estratificaciones en contra a la dirección de las pendientes presenta un área de 4.61 ha, de las cuales el 10.27 % presenta inestabilidad. Siendo susceptible a reptaciones y desprendimientos.

# 4.4.1.2 Unidad agradacional con inclinaciones mayores a 30 grados en ladera contra pendiente (UAc2).

Dicha unidad está compuesta por depósitos coluviales, los cuales yacen sobre estratificaciones en contra a la dirección de las pendientes presenta un área de 7.0 ha, de las cuales el 0.71 % presenta inestabilidad. Siendo la más afectada, presenta reptaciones y desprendimientos.

## 4.4.1.3 Unidad degradacional con inclinaciones entre 0 y 30 grados en ladera contra pendiente (UDe1).

Dicha unidad está compuesta por formaciones rocosas, Formación Churubita, formación de rocas blandas, cuyas estratificaciones se encuentran en contra a la dirección de las pendientes, presenta un área de 5.88 ha, de las cuales el 1.25 % presenta inestabilidad.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



# 4.4.1.4 Unidad degradacional con inclinaciones mayores a 30 grados en ladera en contra pendiente (UD c2)

Dicha unidad está compuesta por formaciones rocosas, cuyas estratificaciones se encuentran en contra a la dirección de las pendientes, presenta un área de 8.11 ha, de las cuales el 1.34 % presenta inestabilidad.

A continuación describimos en la Tabla 13. , la descripción y análisis de las unidades geomorfológicas:

Tabla 13. Descripción geomorfológica.

| ORIGEN                                          | ESTRUCTURA                                  | MORFOMETRIA                                 | MORFODINAMICA                                                                      | SÍMBOLO |
|-------------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------|---------|
| Unidad ladera en contra pendiente               | con inclinaciones<br>entre 0 y 30<br>grados | Presenta reptaciones y desprendimientos     | UA c1                                                                              |         |
|                                                 | contra                                      | con inclinaciones<br>mayores a 30<br>grados | Es la unidad que presenta más afectación, presenta reptaciones y desprendimientos. | UA C2   |
| Unidad degradacional ladera en contra pendiente | con inclinaciones<br>entre 0 y 30<br>grados |                                             | UD e1                                                                              |         |
|                                                 |                                             | con inclinaciones<br>mayores a 30<br>grados |                                                                                    | UD e2   |

Fuente: Resultado del estudio.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



## 4.5 MORFODINÁMICA - INTENSIDAD DE EROSIÓN

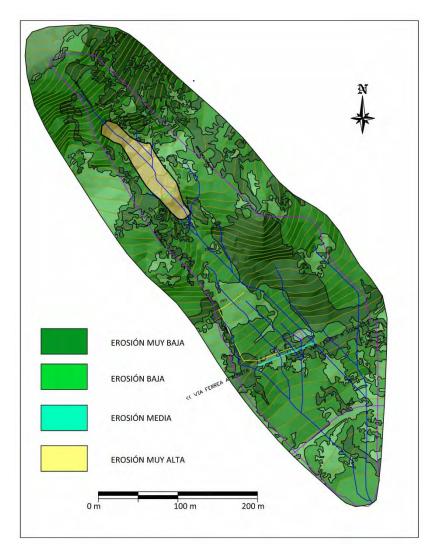
El enfoque de este estudio se orienta hacia la caracterización y cartografía de las unidades de cobertura de los suelos como factor de resistencia o favorecimiento de los procesos erosivos y de remoción en masa.

El mapa de erosión fue realizado con el procesamiento digital de imágenes mediante una clasificación supervisada, resultado de un agrupamiento en la distribución de los pixeles hechos en una clasificación resultado de la mayor o menor cobertura vegetal presente en el área.

Posteriormente para cumplir con los objetivos del estudio y conocer la dinámica del área, realizamos la suma en un SIG (utilizando los mapas densidad de drenaje, geomorfológico y de cobertura) junto con los levamientos en campo y la ubicación de procesos morfodinámicos obteniendo un mapa final de erosión.

La morfodinámica es la parte de la geomorfología que trata el estudio de los procesos morfodinámicos presentes y pasados.

El mapa de intensidad de erosión describe unidades de intensidad de erosión así: erosión muy baja, erosión baja, erosión media, erosión alta y erosión muy alta. (Ver Figura 22).






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Figura 22. Imagen del Mapa erosión.



Fuente: Resultado del estudio.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



## 5 USO ACTUAL Y COBERTURA DEL SUELO

Ecosistemas terrestres son aquellos que se dan sobre la capa de tierra superficial de la Biosfera. Los ecosistemas terrestres ocupan, proporcionalmente, menos superficie que los ecosistemas acuáticos. Mientras que a estos últimos les corresponde aproximadamente un 75 %, los ecosistemas terrestres dominan el 25 % restante.

El grupo más numeroso de individuos de los ecosistemas terrestres son los insectos representado por unas 900.000 especies. Dentro de los animales el segundo grupo más significativo serían las aves, con aproximadamente 8500 especies y en tercer lugar los mamíferos con unas 4100 especies. Dentro del mundo de las plantas, existen numerosos tipos, las angiospermas son las más abundantes, con unas 224000 especies frente a las 24000 especies de briofitos.

Los ecosistemas terrestres presentan una variedad mayor que el resto de ecosistemas dado que son muchos los factores que limitan las especies que en ellos habitan. Todos estos factores han producido una gran variedad de ecozonas o regiones biogeográficas en donde los elementos animados e inanimados presentan sus características peculiares.

El progreso de Boyacá y de su gente ha estado estrechamente ligado a los recursos naturales del departamento, a su inmenso potencial hídrico, la fertilidad de sus campos, sus minas de carbón y esmeraldas. El uso del suelo y el cambio en la cobertura vegetal asociados al fraccionamiento de la biósfera es uno de los más severos efectos de las acciones directas e indirectas del hombre sobre la





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



tierra, lo cual ha generado un incremento de las tasas de extinción de especies en las décadas recientes.

Todas las estimaciones de la superficie afectada por estos fenómenos, son indicadores de un severo problema que se está marcando y que tiene que ver directamente con el cambio en la cobertura vegetal hacia otro uso del suelo y el deterioro ambiental.

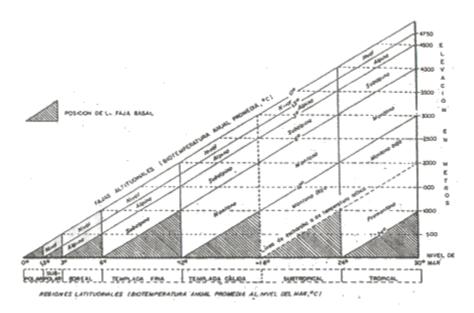
Investigaciones aplicadas a los cambios en la cobertura vegetal están teniendo un mayor grado atención debido esencialmente a las implicaciones de la deforestación. A nivel regional, dicho mecanismo ocasiona la disminución e incluso la perdida de la cobertura vegetal, el detrimento de los recursos forestales, el deterioro físico y químico del suelo, alteración del balance hídrico y la desestabilización de cuencas.

## 5.1 VEGETACIÓN

Se presenta una descripción del sistema basado en las zonas de visa desarrollado desde 1947 por L.R. Holdridge. La descripción tiene un carácter anatómico; es decir, se describe la estructura, las partes del sistema y sus conexiones, sin detenerse en aspectos fisiológicos ni las bases filosóficas que se describen en el final de este capítulo en un una caracterización vegetal general. Se describe la estructura de las zonas de vida (primer nivel del sistema), refiriéndose para ello a los elementos del diagrama respectivo. Se describen también asociaciones, que






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



constituyen asociaciones del segundo nivel del sistema, y se mencionan el uso de la tierra, trabajado con la nomenclatura Corine Land Cover.

Para la descripción regional el sistema de clasificación basado en zonas de vida contempla regiones latitudinales y, dentro de cada región, se contemplan fajas o pisos altitudinales como se observan a continuación:

Figura 23. Posiciones aproximadas de las Líneas gula de las regiones latitudinales y las fajas altitudinales.



Fuente: sistema mundial de zonas de vida de Holdridge, (basado en una tasa de cambio de .6°C por,cada 1000m).

Fuente: Holdridge, L., 1987.

La vegetación es de clima frío muy húmedo, es de porte muy bajo y se encuentra intervenida en gran medida. En algunas zonas se conservan, especialmente los





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



frailejones y pajonales que son especies dominantes. Según la clasificación de L.R. Holdridge en el municipio existen las siguientes unidades bioclimáticas:

## 5.2 BOSQUE ANDINO

Se presentas en áreas de gran pendiente, protegido con pequeñas manchas para estabilizar los suelos o áreas de mínima condición para labores agrícolas. Predominan las especies como encenillo (*Weinannia tormentosa*), raque (*Vallea estipularis*), cucharo (*Rapanea quiqmensis*), laurel (*Myrica parsifolia*), pegamoscos (*Befaria resinosa*).

## 5.3 BOSQUE RASTROJO ALTO ANDINO

La vegetación de esta región se caracteriza por presentar una mediana intervención antrópica que ha sido acentuada sobre sus especies constitutivas y por lo tanto del bosque en general. Se presenta en la formación vegetal de bosque húmedo montano bajo (bh-MB), en parches aislados y a veces continuos con topografía ondulada.

## 5.4 MATORRAL ANDINO SECUNDARIO

Dominado por plantas de 2 - 3 metros, con especies como (*Miconia ligustina*) Tuno, (*Myrsine dendendius*), (*Bacharis prumifolis*) chilco, (*Dyplostephyun, rossasimifolium*), (*Monachaetun myrtoidum*), (*empalthorium lancrolaliym*), (*Escallonea myrtilloides*) Tobo, (*Berberis glauca*), (*Glauteria radifolia*) y otros. En medio de ellos crecen musgos, helechos, orquídeas y muchas lianas de





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



passifloras y bejucos, se encuentra diseminado sobre gran parte del municipio preferentemente en rastrojos y potreros abandonados.

## 5.5 BOSQUE SECUNDARIO HETEROGÉNEO ANDINO

Predominan el aliso (*Alnus acuminata*), uva camarona (*Carendishiabracteata*), arrayán (*Myrtiasiantees foliosa*), Espino (*Xilosma especuliferum*), cucharo (*Myssine ferruginea*), borrachero (*Viburnun tinoides*). Son bosques dispersos y constituyen el testimonio de la tala de los árboles. Se conservan como protectores del suelo en el curso de las quebradas, importantes en el mantenimiento de humedales y cuerpos de agua, como barreras vivas en los linderos de fincas y delimitación de potreros, se presenta en toda el área del municipio en forma dispersa; conforma áreas y unidades de paisaje pero principalmente actúa como cercas vivas y divisoria áreas de pastos naturales y pequeños cultivos aislados.

## 5.6 MATORRAL BAJO

Con especies como la jarilla (*Stevia lucida*), chilco (*Bacharis latifolia*), zarzamora (*Rubus urticifoliums*), pasto rabo de zorro (*Andropogón sp*) y otras. Se caracteriza porque son áreas de potreros que han sido abandonadas o descuidadas o áreas que fueron cultivados anteriormente. Se localizan en las veredas Montoya, Estancia Grande y Supatá.

## 5.7 MATORRAL BAJO DE LADERAS CON AFLORAMIENTOS DE ROCAS





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Se localizan en terrenos con afloramientos de rocas y áreas intervenidas del bosque alto andino que no tienen oferta ambiental en producción óptima con altos pendientes y escaso horizonte A y con formación rocosa; sufren alta irradiación y estrés hídrico durante gran parte del año; sin embargo, son reguladores de los flujos hídricos, mejoran el paisaje.

#### 5.8 PASTOS

Representan un 50% aproximadamente del área del municipio y son áreas donde están establecidas las ganaderías. Las especies de pastos son: pasto azul archoro (*Dactylis glomerata*), falsa poa (*Holcus lanatus*), kikuyo (*Pennisetum clandestinun*), trébol blanco (*Trofolium repens*), trébol rojo (*Trifolium pratense*), cortaderas (*Cyperus sp, cortadera sp*), chicoria (*Hypochoeris radicata*), sangre de toro (*Rumex acetacella*).

## 5.8.1 COBERTURA Y USO DE SUELO PARA EL ÁREA DE INFLUENCIA DEL ESTUDIO

Dentro del programa CORINE (Coordination of information on the environment) promovido por la Comisión de la Comunidad Europea fue desarrollado el proyecto de cobertura de la tierra "CORINE Land Cover" 1990 (CLC90), el cual definió una metodología específica para realizar el inventario de la cobertura de la tierra. Actualmente, su base de datos constituye un soporte para la toma de decisiones en políticas relacionadas con el medio ambiente y el ordenamiento territorial,





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



aceptada por la Unión Europea. Hoy en día se aplica sobre la totalidad del territorio europeo a través del proyecto CLC2000.

La base de datos de CORINE Land Cover Colombia (CLC) permite describir, caracterizar, clasificar y comparar las características de la cobertura de la tierra, interpretadas a partir de la utilización de imágenes de satélite de resolución media (Landsat), para la construcción de mapas de cobertura a escala 1:100.000. En Colombia existen actualmente múltiples metodologías y sistemas de clasificación para levantar información de las coberturas de la tierra.

El proyecto "CORINE Land Cover Colombia" se propuso estandarizar un sistema de clasificación, con categorías jerárquicas definidas de acuerdo con la información que pueden proporcionar las imágenes de satélite Landsat TM, conforme con las condiciones locales del territorio nacional. La adaptación y validación de la metodología CLC permitirá comparar estadísticas de ocupación de la tierra, crear líneas de comunicación entre las diferentes instituciones que adopten el sistema, y, además, facilitar la homologación de información.

La metodología empleada para el levantamiento de las coberturas de vegetales dentro de la zona fue la Corine Land Cover adaptada, desarrollada y abalada para Colombia por instituciones del orden nacional y regional como IDEAM, IGAC, CORMAGDALENA, SINCHI y UAESPNN, Esta metodología tiene como propósito la realización del inventario homogéneo de la cubierta biofísica (cobertura) de la superficie de la tierra a partir de la interpretación visual de imágenes de satélite





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



asistida por computador y la generación de una base de datos geográfica, junto con los siguientes procedimientos generales,

- Procesamiento digital de imágenes satelitales.
- Definición de la leyenda.
- Distribución de la zona de estudio a los intérpretes.
- Interpretación visual sobre pantalla.
- Controles de calidad: temática y topológica.

Trabajo de campo: caracterización vegetal y verificación de coberturas.

Ajustes a la cobertura digital definitiva.

Estructuración de la información.

Los productos del proyecto, representados en el mapa de las coberturas vegetales y usos de suelos de la zona de estudio, en la metodología y en leyenda adaptadas al territorio colombiano y en este caso para la jurisdicción de Corpochivor, proveerán las características temáticas y cartográficas que la región requiere para el conocimiento, la evaluación de las formas de uso, ocupación y apropiación del espacio geográfico, así como para satisfacer las necesidades de información de sectores científicos, económicos, académicos y ambientales, entre otros, esperando que se conviertan en insumos básicos para los tomadores de decisiones en el país.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



La metodología CORINE Land Cover, adaptada a las condiciones del territorio colombiano, se convierte en una herramienta para avanzar en el conocimiento de las coberturas de la tierra en otras cuencas y para la actualización permanente de la información, con lo cual se espera que se faciliten los procesos de seguimiento y evaluación de la dinámica de los cambios de las coberturas terrestres.

Finalmente, se espera que este producto, sea usado como una herramienta de apoyo para la gestión sostenible de los recursos naturales y para construir las bases para el ordenamiento ambiental y territorial del país, y unificación de las metodologías de coberturas de la tierra que se aplican actualmente en Colombia.

## 5.8.2 ESTUDIO DE LA FLORA

La flora es el conjunto de especies vegetales que pueblan un territorio o una región geográfica, consideradas desde el punto de vista sistemático. La flora será rica o pobre según que la región geográfica considerada posea muchas especies vegetales o escaso número de ellas. El conjunto de flora es de muy variable amplitud, según el punto de vista desde el que se considere.

Para las áreas de estudio indirecto (AEI) se analizarán los siguientes aspectos:

- Identificar, sectorizar y describir las zonas de vida o formaciones vegetales.
- Identificación, sectorización y descripción de los diferentes tipos de cobertura vegetal existente.

Identificación de especies endémicas, amenazadas o en peligro de extinción.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Presentar un plano de cobertura vegetal y uso del suelo a partir de sensores remotos y control de campo, en caso de requerirse. Las unidades cartografiadas se deben describir, teniendo en cuenta su localización, distribución e importancia ecológica y social. El análisis para el área de estudio directo (AED) se estudiara entre otras las siguientes variables:

- Descripción florística: Con identificación de endemismos, importancia económica y cultural.
- Diversidad florística
- Índices de calificación e importancia ecológica.
- Importancia económica y cultural de algunas especies.
- Identificación de áreas que por sus características ecológicas deben conservarse en su estado actual, determinando espacialmente las áreas de restricción y conservación.

Para el proyecto se deberá realizar un muestreo detallado de la vegetación en cada una de las formaciones vegetales identificadas, con el objetivo de determinar biodiversidad, cobertura y abundancia. Se indicarán las especies con valor ecológico, cultural y comercial. Aplica para áreas de influencia directa. Se realizó un análisis de:

 Localización de las diferentes unidades de cobertura vegetal y uso actual del suelo, que incluya su identificación respecto a actividades pecuarias, agrícolas, agropecuarias, forestales, agrosistemas, eriales, zonas protectorazs, etc.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



 Descripción fisionómica de las diferentes coberturas vegetales, perfil y estructura de estratos (arbóreo; arbustivo: herbáceo; epígeo; entre otros).

Identificación de los usos y/o destinos específicos dados por las comunidades, incluyendo los usos culturales.

## 5.8.3 IDENTIFICACIÓN Y DESCRIPCIÓN DE COBERTURAS

Mediante el sistema de clasificación de coberturas de tierra metodología Corin Land Cover adaptada para Colombia que establece una leyenda nacional de manera jerárquica, derivando las unidades de coberturas de la tierra con base en criterios fisionómicos de altura y densidad, claramente definidos y aplicables a todas las unidades consideradas para un grupo de coberturas del mismo tipo.

De esta manera, se garantiza que sea posible la inclusión de nuevas unidades o la definición de nuevos niveles de unidades para estudios más detallados, permitiendo su ubicación y definición rápidamente. Se establecieron las siguientes zonas en el área de estudio:

## 5.8.4 TEJIDOS ARTIFICIALES

Comprende las áreas de las ciudades y las poblaciones y, aquellas áreas periféricas que están siendo incorporadas a las zonas urbanas mediante un proceso gradual de urbanización a de cambia del usa del suela hacia fines comerciales, industriales, de servicias y recreativas.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



## 5.8.4.1 ZONAS URBANAS

Las zonas urbanizadas incluyen los territorios cubiertos por infraestructura urbana y todos aquellos espacios verdes y redes de comunicación asociados con ellas, que configuran un tejido urbano.

## 5.8.5 TEJIDO URBANO DISCONTINUO

Incluyen los territorios cubiertos por infraestructura urbana y todos aquellos espacios verdes y redes de comunicación asociados con ellas, que configuran un tejido urbano. Presenta una unidad de tejido urbano discontinuo que son espacios conformados por edificaciones y zonas verdes. Las edificaciones, vías e infraestructura construida cubren la superficie del terreno de manera dispersa y discontinua, ya que el resto del área está cubierta por vegetación. Esta unidad puede presentar dificultad para su delimitación cuando otras coberturas de tipo natural o seminaturales se mezclan con áreas clasificadas como zonas urbanas.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



Fotografía 6. Tejido urbano discontinuo presente en la zona de estudio



Fuente: Registro Fotográfico

## 5.8.6 ZONAS INDUSTRIALES O COMERCIALES Y REDES DE COMUNICACIÓN

Comprende los territorios cubiertos por infraestructura de uso exclusivamente comercial, industrial, de servicios y comunicaciones. Se incluyen tanto las instalaciones como las redes de comunicaciones que permiten el desarrollo de los procesos específicos de cada actividad.

## 5.8.6.1 RED VIAL

Comprende las áreas cubiertas por la infraestructura vial, tales como carreteras, autopistas y puentes, así como las áreas asociadas como los peajes, se encuentra ubicada aledaña a la vía principal en el kilómetro en el Km 26 entre Tunja y Bogotá.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Fotografía 7. Red vial presente en la zona de estudio



Fuente: Registro Fotográfico

## 5.8.6.2 RED FERROVIARIA

Comprende las áreas cubiertas por la infraestructura férrea, tales como vías, intercambiadores y estaciones de abordaje. Incluye las áreas asociadas como zonas verdes y zonas de estacionamiento conexas con las estaciones.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



Fotografía 8. Red vial presente en la zona de estudio



Fuente: Registro Fotográfico

## 5.8.6.3 TERRITORIOS AGRÍCOLAS

Son los terrenos dedicados principalmente a la producción de alimentos, fibras y otras materias primas industriales, ya sea que se encuentren con cultivos, con pastas, en rotación y en descanso o barbecho. Comprende las áreas dedicadas a cultivos permanentes, transitorios, áreas de pastos y las zonas agrícolas heterogéneas.

En el área de estudio no existe presencia de áreas ocupadas con cultivos cuyo ciclo vegetativo es menor a un año, como por ejemplo los cereales (maíz, trigo,





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR**  Universidad Pedagógica y Tecnológica de Colombia

EJECUTOR

CONVENIO No.
038/2012.

cebada y arroz), los tubérculos (papa y yuca), además de ello no existe el uso de suelos para el desarrollo de cultivos permanentes, la mayoría de este suelo es usado para el pastoreo.

## 5.8.6.4 PASTOS

En la zona de influencia de la falla en dominancia de zona agrícola del orden de pastos Comprende las tierras cubiertas con hierba densa de composición florística dominada principalmente por la familia *Poaceae*, dedicadas a pastoreo permanente por un periodo de dos o más años.

Algunas de las categorías definidas pueden presentar anegamientos temporales o permanentes cuando están ubicadas en zonas bajas o en depresiones del terreno. Una característica de esta cobertura es que en un alto porcentaje su presencia se debe a la acción antrópica, referida especialmente a su plantación, con la introducción de especies no nativas principalmente, y en el manejo posterior que se le hace.

## 5.8.6.5 PASTOS LIMPIOS

Esta cobertura comprende las tierras ocupadas por pastos limpios con un porcentaje de cubrimiento de 35%; la realización de prácticas de manejo (Limpieza, encalamiento y/o fertilización, etc.) y el nivel tecnológico utilizados impiden la presencia o el desarrollo de otras coberturas.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Fotografía 9. Pastos limpios presente en la zona de estudio



Fuente: Registro Fotográfico

## **5.8.6.6 PASTOS ARBOLADOS**

Cobertura que incluye las tierras cubiertas con pastos, en las cuales se han estructurado potreros con presencia de árboles de altura superior a cinco metros, distribuidos en forma dispersa. La cobertura de árboles debe ser mayor a 30% y menor a 50% del área total de la unidad de pastos. Característicos de zonas que han sido utilizados para zonas de pastoreo.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



Fotografía 10. Pastos arbolados presentes en la zona de estudio



Fuente: Registro Fotográfico

## 5.8.6.7 BOSQUES Y ÁREAS SEMINATURALES

Comprende un grupo de coberturas vegetales de tipo boscoso, arbustivo y herbáceo, desarrolladas sobre diferentes sustratos y pisos altitudinales que son el resultado de procesos climáticos; también por aquellos territorios constituidos por suelos desnudos y afloramientos rocosos y arenosos, resultantes de la ocurrencia de procesos naturales o inducidos de degradación. Para la leyenda de coberturas de la tierra de Colombia, en esta categoría se incluyen otras coberturas que son el resultado de un fuerte manejo antrópico, como son las plantaciones forestales y la





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



vegetación secundaria o en transición. Las unidades se agrupan en las siguientes categorías:

## **5.8.6.8 BOSQUES**

Comprende las áreas naturales o seminaturales, constituidas principalmente por elementos arbóreos de especies nativas o exóticas. Los árboles son plantas leñosas perennes con un solo tronco principal, que tiene una copa más o menos definida.

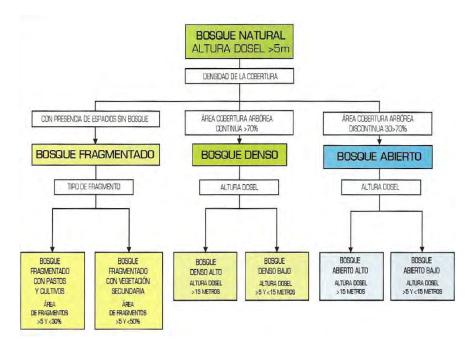
Para efectos de clasificación los bosques son determinados por la presencia de árboles que deben alcanzar una altura del dosel superior a los cinco metros.

Para efectos de la caracterización de la densidad se definió como el porcentaje de cobertura de la copa. Por su parte, la cobertura de la copa, en este documento, corresponde al porcentaje del suelo o del terreno ocupado por la proyección perpendicular de la vegetación en su conjunto, o por uno de sus estratos o especies. Una cobertura densa corresponde a una cobertura arbórea mayor a 70% de la unidad, en la cual las copas se tocan. Una cobertura se considera abierta cuando la cobertura arbórea representa entre 30% y 70% del área total de la unidad, en la cual la mayoría de las copas no se tocan entre ellas.

La altura es definida por la altura total del dosel, sin incluir emergentes. Para efectos de este estudio, se adaptó la clasificación propuesta por Caín y Castro (1959), quienes definen como bajos los estratos de árboles con altura menor a ocho metros; intermedios a los estratos de árboles con alturas comprendidas entre






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



8 y 15 metros; y como estratos de árboles altos los que tienen altura superior a 15 metros. De esta manera, para esta leyenda, se unieron los estratos bajo e intermedio en uno solo denominado como bajo.

Para la interpretación de las coberturas de la tierra, los bosques se clasifican, entonces, a partir de la densidad de la cobertura arbórea, en densos y abiertos; de acuerdo con la altura del dosel, los bosques se clasifican en altos y bajos; y de acuerdo con la condición de inundabilidad del terreno donde se ubican los bosques, se clasifican en inundables y de tierra firme. De esta manera, se obtiene la clasificación que se explica a continuación:

Figura 24. CRITERIOS PARA LA CLASIFICACIÓN DE LOS BOSQUES



**FUENTE: Corine Land Cover 2010** 





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



## 5.8.6.9 BOSQUE DENSO

Cobertura constituida por una comunidad vegetal dominada por elementos típicamente arbóreos, los cuales forman un estrato de copas (dosel) más o menos continuo, y con altura del dosel superior a cinco metros. Estas formaciones vegetales no han sido intervenidas o su intervención ha sido selectiva y no ha alterado su estructura original y las características funcionales Se exceptúan de esta unidad los bosques fragmentados.

## 5.8.6.10 BOSQUE DENSO BAJO

Cobertura constituida por una comunidad vegetal dominada por elementos típicamente arbóreos, los cuales forman un estrato de copas (dosel) más o menos continuo, con altura del dosel superior a cinco metros, pero inferior a 15 metros.

#### 5.8.6.11 BOSQUE DENSO BAJO DE TIERRA FIRME

Corresponde a las áreas con vegetación de tipo arbóreo caracterizada por un estrato más o menos continuo con altura del dosel entre 5 y 15 metros y que se encuentra localizada en zonas que no presentan procesos de inundación periódicos.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



Fotografía 11. Bosque denso bajo presente en la zona de estudio.



Fuente: Registro Fotográfico

La zona de estudios aunque presenta dominancia de *oreopanax floribundus* (kunth) decne. & planch. y fuchsia boliviana carrière, este tipo de cobertura está diezmándose por la inclusión de myrtaceae y cupresáceas utilizadas para la obtención de madera.

# 5.8.6.12 BOSQUE FORESTAL

Son coberturas constituidas por plantaciones de vegetación arbórea, realizada por la intervención directa del hombre con fines de manejo forestal. En este proceso se constituyen rodales forestales, establecidos mediante la plantación *y/o* la siembra durante el proceso de forestación o reforestación, para la producción de madera (plantaciones comerciales) o de bienes y servicios ambientales (plantaciones protectoras).





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Esta cobertura presenta en la imagen de satélite un patrón geométrico regular, constituido por las hileras de árboles generalmente de la misma edad. Para su identificación se requiere del apoyo de información secundaria como fotografías aéreas, mapas temáticos y control de campo.

#### 5.8.6.13 CUPRESSACEAE

Son árboles o arbustos resinosos, con hojas simples, aciculares o en forma de escama, enteras, que se sitúan en disposición opuesta o en verticilios, por 3 ó 4 y habitualmente perennes. Las cupresáceas no tienen verdaderas flores y sus órganos reproductores pueden ser monoicos (en la misma planta los dos sexos) o dioicos (en distinta planta.

La polinización es anemófila. Producen conos masculinos y femeninos, con escamas enfrentadas o en verticilios, que pueden ir en la misma planta o en plantas de distinto sexo. Los conos masculinos están constituidos por diversos verticilios de estambres, cada uno de éstos tiene forma de escama y lleva en el envés de 3 a 7 sacos polínicos; las escamas tienen, a veces, forma de parasol y otras veces son casi planas y más o menos triangulares. Los conos femeninos suelen ser globosos u ovoides y tienen, por lo general, las dos brácteas soldadas en una sola, indiferenciadas; hay generalmente de 2 a 15 rudimentos seminales por escama.

La mayoría de los géneros producen fructificaciones leñosas a modo de piñas esféricas (gálbulos leñosos), las inflorescencias femeninas del género Juniperus,





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



en cambio, dan lugar a una estructura carnosa denominada gálbulo carnoso, originada por la concrescencia de las tres hojas escuamiformes superiores. Los géneros más importantes son Cupressus (cipreses), Juniperus (enebros y sabinas), Chamaecyparis (cedro blanco de Oregón), Calocedrus (cedro blanco de California) y Thuja (árbol de la vida)

Fotografía 12. Cupressaceaes presente en la zona de estudio



Fuente: Registro Fotográfico

## **5.8.6.14 MYRTACEAE**

Esta es una familia en donde sus miembros son plantas dicotiledóneas. Entro de sus características generales podemos decir que todas las especies son arboladas, presentan aceites esenciales, y la flor casi siempre presenta sus verticilos en múltiplos de cuatro o cinco. Una característica representativa de esta





#### MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE FONDO DE COMPENSACIÓN AMBIENTAL FCA

CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



familia es que liber está situado en ambos lados del xilema exterior, difiriendo con el resto de las plantas.

Estos árboles presentan hojas perenes, alternas y normalmente con el margen de sus hojas no dentado, estípulas efímeras o ausentes, con puntuaciones glandulares, aromáticas.

En muchas ocasiones podemos observar un tallo tipo exfoliativo o de textura áspera, aunque no siempre se cumple con esta característica. Poseen un fruto por lo general capsular como por ejemplo en los siguientes ejemplares: Eucalipto, Corymbia, Angophora, Leptospermum, Melaleuca, Metrosideros. Aunque también se pueden presentar en forma de baya, capsula o drupa.

Fotografía 13. Myrtaceae presente en la zona de estudio



Fuente: Registro Fotográfico





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



# 5.8.6.15 ÁREAS CON VEGETACIÓN HERBÁCEA Y/O ARBUSTIVA

Comprende un grupo de coberturas vegetales de tipo natural y producto de la sucesión natural, cuyo hábito de crecimiento es arbustivo y herbáceo, desarrolladas sobre diferentes sustratos y pisos altitudinales, can poca o ninguna intervención antrópica.

Para la leyenda de CORINE Land Cover adaptada para Colombia, en esta clase se incluyen otros tipos de cobertura tales como las áreas cubiertas por vegetación principalmente arbustiva con dosel irregular y presencia de arbustos, enredaderas y vegetación de bajo porte. Las coberturas definidas son las siguientes:

## 5.8.6.16 ARBUSTAL

Comprende los territorios cubiertos por vegetación arbustiva desarrollados en forma natural en diferentes densidades y sustratos. Un arbusto es una planta perenne, con estructura de tallo leñoso, con una altura entre 0,5 y 5 m (Img 7.0), fuertemente ramificado en la base y sin una copa definida.

## 5.8.6.17 ARBUSTAL ABIERTO MESOFILO

Este tipo de arbustal abierto está caracterizado por presentar una vegetación mesofila compuesta por una comunidad vegetal donde predominan los arbustos achaparrados y arboles pequeños, que se localizan en zonas húmedas,





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



caracterizadas por su considerable precipitación y humedad atmosférica durante casi todo el año. Esta cobertura hace referencia principalmente a las formaciones arbustivas andinas y altoandinas, aledañas a las paramos y bosques de niebla.

Fotografía 14. Arbustal mesofilo presente en la zona destudio



Fuente: Registro Fotográfico

## 5.8.6.18 **HELECHAL**

Cobertura dominada por la especie de helecho tropical *Pteridium Aquilinum* (L.) Kuhn llamado por lo general helecho águila o común es una especie de helecho perteneciente a la familia *Hypolepydaceae*. Esta especie es uno de los organismos vegetales de más amplia distribución pudiéndose encontrar en todos los continentes, salvo la Antártida.





#### MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE FONDO DE COMPENSACIÓN AMBIENTAL ECA

FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



Helecho isospóreo vivaz o perenne con un rizoma subterráneo muy desarrollado que llega a alcanzar hasta un metro de longitud de color pardo y cubierto de vellosidades oscuras. Frondes muy grandes, de hasta 2 metros con láminas tri o cuatripinnadas con pinnas ovoides y glabras en el haz mientras que en el envés son muy pilosas, peciolo menor o igual en longitud que la lámina. Posee soros reunidos en cenosoros lineares con doble indusio, por una parte un pseudoindusio membranoso compuesto por la misma lámina y un indusio verdadero de color pardo situados en el envés de los frondes.

Esporangios esferoidales con anillo longitudinal, esporas triletas muy ligeras que se diseminan muy rápidamente por el viento.

Fotografía 15. Cobertura Helechal



Fuente: Registro Fotográfico





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



# 5.8.6.19 VEGETACIÓN SECUNDARIA O EN TRANSICIÓN

Comprende aquella cobertura vegetal originada por el proceso de sucesión de la vegetación natural que se presenta luego de la intervención o por la destrucción de la vegetación primaria, que puede encontrarse en recuperación tendiendo al estado original. Se desarrolla en zonas desmontadas para diferentes usos, en áreas agrícolas abandonadas y en zonas donde por la ocurrencia de eventos naturales la vegetación natural fue destruida. No se presentan elementos intencionalmente introducidos por el hombre.

# 5.8.6.20 VEGETACIÓN SECUNDARIA BAJA

Son aquellas áreas cubiertas por vegetación principal mente arbustiva y herbácea con dosel irregular y presencia ocasional de árboles y enredaderas, que corresponde a los estadios iniciales de la sucesión vegetal después de presentarse un proceso de deforestación de los bosques o aforestación de los pastizales. Se desarrolla posterior a la intervención original y, generalmente, están conformadas por comunidades de arbustos y herbáceas formadas par muchas especies.

La vegetación secundaria comúnmente corresponde a una vegetación de tipo arbustivoherbaceo de ciclo corta, con alturas que no superan los cinco metros y de cobertura densa. Por lo general corresponde con una fase de colonización de inductores preclimáticos, donde especies de una fase más avanzada se establecen y comienzan a emerger.





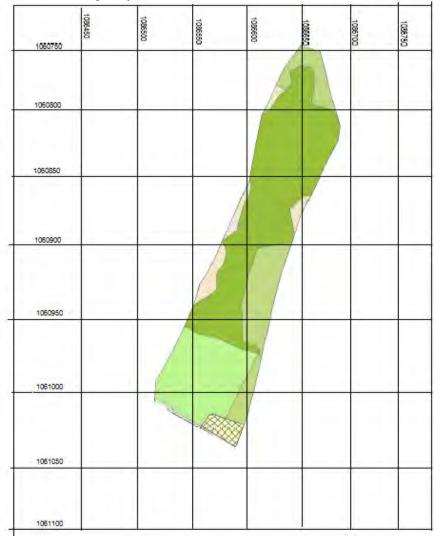
FONDO DE COMPENSACIÓN AMBIENTAL FCA
CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR
-CORPOCHIVOR



# Fotografía 16. Sucesión vegetal secundaria



Fuente: Registro Fotográfico






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Figura 25. Cobertura vegetal y uso de suelo



Fuente: Resultado del estudio





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Tabla 14. Porcentaje de cobertura Vereda La Estancia Grande

| TIPO DE COBERTURA                    | AREA m <sup>2</sup> | % COBERTURA |
|--------------------------------------|---------------------|-------------|
| ZONA DE REDES DE COMUNICACIÓN        | 852                 | 5,11        |
| BOSQUE DE PLANTACIÓN FORESTAL        | 4962                | 29,73       |
| TEJIDO URBANO DISCONTINUO            | 686                 | 4,11        |
| BOSQUE DENSO BAJO DE TIERRA<br>FIRME | 1399                | 8,38        |
| BOSQUE FRAGMENTADO                   | 1678                | 10,06       |
| PASTOS ARBOLADOS                     | 1322                | 7,92        |
| PASTOS LIMPIOS                       | 5789                | 34,69       |

Fuente: Resultado del estudio

# 5.8.7 UNIDADES DE COBERTURA VEGETAL

Para la individualización, caracterización y observación de las diferentes unidades de cobertura vegetal se realizaron estudios de campo, en el cual se evaluaron la estructura y la composición florística de las diferentes unidades de cobertura vegetal, mediante la observación directa en campo y la recolección de material botánico, así como también se realizaron observaciones de topografía, drenaje y suelos.

En ecología se pueden hacer estudios de fauna de diferentes formas. Los estudios pueden ser de tipo descriptivo, comparativo, observacional y experimental. Los estudios descriptivos son generalmente exploratorios y no tienen una hipótesis a *priori*. El objetivo de estos estudios es obtener información acerca de un fenómeno o sistema del cual previamente se tenía ninguna o muy poca información. Los estudios comparativos se deben realizar en sistemas de los que se tiene cierta





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



información y cuando se tiene una o varias hipótesis de antemano.

El objetivo de este tipo de estudio es obtener la información necesaria para someter a prueba las hipótesis. Los estudios observacionales se basan en información obtenida del sistema en su estado original; generalmente no se hace ninguna manipulación del sistema. Los estudios experimentales consisten en manipular o modificar, de manera particular, un determinado sistema o ambiente. La información que interesa es, precisamente, la respuesta del sistema al tratamiento.

Se presenta el componente vegetal de la zona de estudio y el siguiente inventario, teniendo en cuenta que muchas de las especies referenciadas, su frecuencia de aparición es muy baja y dispersa. Para la elaboración del mapa de cobertura vegetal se generalizaron las especies para facilitar su manejo, No se cuenta con un detallado inventario de la biomasa.

Tabla 15. Unidades de cobertura Vegetal

| FAMILIA       | NOMBRE CIENTÍFICO                                 | NOMBRE COMÚN    |
|---------------|---------------------------------------------------|-----------------|
| Cupresáceas   | Pinus halepensis                                  | Pino de piña    |
| Adoxaceae     | Viburnum tinoides L.f.                            | garrocho        |
| Adoxaceae     | Viburnum triphyllum Benth.                        | garrocho        |
| Araliaceae    | Oreopanax floribundus (Kunth)<br>Decne. & Planch. | Mano de oso     |
| Asteraceae    | Baccharis bogotensis Kunth                        | Chilca          |
| Asteraceae    | Baccharis latifolia (Ruiz & Pav.)<br>Pers.        | Chilca          |
| Asteraceae    | Vernonia sp.                                      | Hoja de agua    |
| Asteraceae    | Coniza bonariensis (L.) Cronquist                 | Cola de caballo |
| Asteráceae    | Taraxacum officinale                              | Diente de león  |
| Cucurbitaceae | Cucurbita sp.                                     | calabaza        |
| Cupresáceas   | Cupresus sempervirens                             | Pino            |





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



| Dennstaedtiaceae | Pteridium aquilinum(L.) Kuhn              | helecho marranero            |  |
|------------------|-------------------------------------------|------------------------------|--|
| Fabaceae         | Acacia melanoxilon R. Br.                 |                              |  |
|                  |                                           | acacia                       |  |
| Malvaceae        | Sida rhombifolia L.                       | Escobilla                    |  |
| Melastomataceae  | Monochaetum myrtoideum (Bonpl.)<br>Naudin | arayan                       |  |
| Melastomataceae  | Miconia squamulosa Triana                 | Tuno                         |  |
| Moráceae         | Ficus benjamina                           | Caucho sabanero              |  |
| Myrtaceae        | Eucalyptus grandis                        | Eucalipto                    |  |
| Myrtaceae        | Eucalyptus pellita                        | Eucalipto                    |  |
| Myrtaceae        | Eucaliptus globulus                       | Eucalipto                    |  |
| Onagraceae       | Fuchsia boliviana Carrière                | fucsia                       |  |
| Orquidiaceae     | Epidendrum elongatum Jacq.                | orquidea                     |  |
| Oxalidaceae      | Oxalis medicaginea Kunth                  | trébol                       |  |
| Papilionáceae    | Vinga trilobata                           | Vinga                        |  |
| Parmeliaceae     | Usnea sp.                                 | liquen, arbolito de<br>monte |  |
| Pinaceae         | Pinus patula Schltdl. & Cham.             | Pino                         |  |
| Poaceae          | Pennicetum setaceum                       | Catalán                      |  |
| Poaceae          | Andropogon bicornis                       | Paja rabo de zorro           |  |
| Poaceae          | Bromus unioloides                         | Cebadilla criolla            |  |
| Poaceae          | Pennicetum clandestinum                   | Pasto                        |  |
| Poaceae          | Melinis minutiflora P. Beauv.             | Capin melao                  |  |
| Poaceae          | Zea mays                                  | Maíz                         |  |
| Rosaceae         | Huperumeles gondotiana                    | Mortiño                      |  |
| Rosaceae         | Rubus bogotensis Kunth                    | Mora                         |  |
| Solanaceae       | Physalis sp.                              | uchuva                       |  |

FUENTE: INVESTIGACIÓN Y TRABAJO EN CAMPO





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



# 6 HIDROGEOLOGÍA

Basados en el análisis de la información hidrológica y climatológica disponible, se estudió la dinámica de la escorrentía superficial y su relación con la geología del subsuelo, para describir las principales características hidrogeológicas del municipio de Ventaquemada analizar la presencia de posibles acuíferos, con el fin de conocer las condiciones que influyen en el deslizamiento.

# 6.1 Unidades Hidrogeológicas.

Basado en el levantamiento geológico del área en escala 1:2.000 y la información tomada en campo, se agruparon en unidades litoestratigraficas de acuerdo con sus características hidráulicas, definiéndose tres unidades hidrogeológicas; cada una de las unidades se clasifica como: Acuífero, Acuitardo y/o Acuicierre, dependiendo de sus características de porosidad y permeabilidad, así:

# 6.1.1 Acuífero.

Unidad geológica que almacena y transmite agua con mucha facilidad, por tanto presenta una porosidad y permeabilidad muy alta.

#### 6.1.2 Acuitardo.

Son aquellas rocas que almacenan una gran cantidad de agua pero la transmiten muy lentamente, siendo aptas solo para bajas captaciones, entre ellas están los materiales arcillo-arenosos. Se consideran como sinónimos de Acuicierre, ya que con el tiempo los espacios intergranulares tienden a sellarse formando estratos permeables que aunque pueden contener grandes cantidades de agua no permiten su flujo a través de sus poros.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



## 6.1.3 Acuicierres.

Son formaciones capaces de contener agua, pero incapaces de transmitirla en cantidades suficientes como para su captación o formación de manantiales importantes.

# 6.2 MARCO HIDROLÓGICO GENERAL

# 6.2.1 UNIDAD I (Permeabilidad Alta)

Se encuentran areniscas de la formación conejo (Kscn), con alta porosidad y permeabilidad primaria, debido a la distribución de los poros que se encuentran conectados entre sí, lo que genera que los fluidos se transmitan más rápidamente.

# 6.2.2 UNIDAD II (Permeabilidad Media)

Se asocia a rocas, que permiten almacenar cierta cantidad de agua, pero que la transmiten muy lentamente, como es el caso de los cuaternarios, estos poseen poros, pero no están conectados entre sí, por lo tanto no se transmite el agua y se va reteniendo en la matriz lodosa que la contiene, por otra parte la formación Plaeners(kg2) en el sector de estudio presenta niveles predominantes de lodolitas, se caracteriza por presentar fracturas es decir una porosidad secundaria, permitiendo el flujo de agua, pero de manera muy lenta.

# 6.2.3 UNIDAD III (Permeabilidad Baja)

Rocas con porosidad pero que no permiten el tránsito a través de ellas porque su permeabilidad es muy baja; constituidas por capas de arcillas, presentes en la Formación conejo (Kscn), las cuales se clasifican como acuícierres.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



# 6.3 INVENTARIO DE PUNTOS DE AGUA

Un punto de agua es un lugar, obra civil, o circunstancia que permita un acceso directo o indirecto al acuífero. Se considera como punto de agua los aljibes, pozos, manantiales y demás cuerpos de agua, que presenten verdaderos afloramientos de acuíferos ya sean superficiales o profundos

Se realizó un inventario de puntos de agua dentro y alrededor del área con el fin de conocer la disponibilidad del recurso hídrico y su influencia en el deslizamiento, encontrándose tres (3) nacederos. El inventario se realizó en la época seca (Febrero a Marzo) y se pudo evidenciar los drenajes superficiales totalmente secos.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



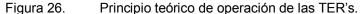
## 7 GEOELECTRICA

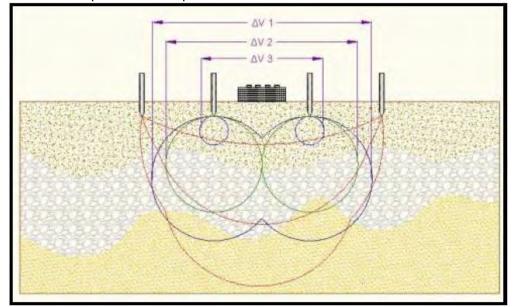
# 7.1 ESTUDIO GEOELECTRICO (TOMOGRAFIA ELECTRICA RESISTIVA)

## 7.1.1 INTRODUCCION

Las Tomografías Eléctricas Resistivas (TER) son métodos geofísicos de exploración o Ingeniería Geofísica, los cuales están constituidos por una serie de técnicas que permiten medir las variaciones de diversas propiedades físicas en los materiales que forman la corteza terrestre tales como: densidad, susceptibilidad magnética, velocidad de propagación de las ondas elásticas, resistividad eléctrica o la radioactividad natural de las rocas, entre otras. La medición y distribución de estas variaciones, permite inferir algunas condiciones litológicas y estructurales del subsuelo, correlacionando los valores medidos o zonas anómalas, con los efectos calculados de los modelos de laboratorio, en los que se conocen las relaciones causa-efecto en términos de una función matemática.

La Tomografía Eléctrica Resistiva es una técnica geofísica para generar secciones o perfiles del subsuelo en base a mediciones de caída de potencial eléctrico. Éste método consiste en inyectar una corriente al interior del suelo, la cual, regresa al voltímetro en forma de una diferencia de potencial (ΔV) producto de las variaciones en resistencia que resultan de cada tipo de material o estrato de suelo (Figura 26); sabiendo de antemano que cada tipo de material tiene diferente manera a "resistir" una corriente eléctrica, los buenos conductores o materiales humedecidos presentan una resistencia baja a la inyección de corriente, mientras que materiales aislantes presentan resistencias eléctricas mayores (figura 27). Lo



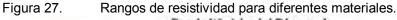

FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR

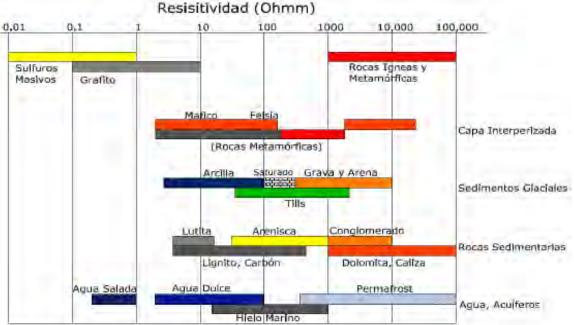


anterior, es relativo a diversos parámetros geológicos como el contenido mineralógico y de humedad, así como la porosidad y grado de saturación de agua dentro del material de estudio. Durante décadas, los Estudios de Resistividad Eléctrica han sido utilizados en investigaciones sobre hidrogeología, geotecnia y también actualmente en estudios ambientales (Loke 2004).






**Fuente:** aplicación de la tomografía eléctrica para la caracterización de un deslizamiento de ladera En un vertedero, Aracil Avila, Jose Angel.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 







**Fuente:** aplicación de la tomografía eléctrica para la caracterización de un deslizamiento de ladera En un vertedero, Aracil Avila, Jose Angel.

Se describe en este trabajo la metodología empleada para realizar levantamientos geofísicos de resistividad, aplicados a estudios del subsuelo enfatizando el hecho de que son métodos totalmente indirectos. El objetivo fundamental de tales estudios es el de medir contrastes de resistividad entre estructuras u objetos de interés con las rocas circundantes. Se analiza la importancia del estudio de la resistividad eléctrica de los suelos y se enumeran los factores más importantes que determinan sus valores para diversos materiales geológicos. En lo referente al método de resistividad, se describe a detalle el principio fundamental que gobierna su empleo en la práctica para estudios del subsuelo.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



La adquisición de datos de campo puede llevarse a cabo con configuraciones de Electrodos que pueden variar su arreglo y que dependen estrictamente del objeto para el cual se realiza la exploración. De introducción reciente es la tomografía eléctrica, técnica multielectródica en la que todo el proceso de adquisición de datos está totalmente automatizado. Esto nos permite poder realizar un gran número de medidas, tanto en profundidad como lateralmente, en un breve espacio de tiempo (del orden de 500 medidas en una hora y media), obteniendo por tanto modelos 2-D de gran resolución.

## 7.2 OBJETIVO

Como apoyo al estudio geotécnico y de estabilidad que se está realizando para el convenio interadministrativo UPTC-CORPOCHIVOR en la Vereda la Estancia Grande, del municipio de Ventaquemada, se realiza un estudio geofísico con la finalidad de determinar el comportamiento del material y continuidad del mismo en profundidad.

## 7.3 PRINCIPIO DEL METODO GEOFISICO.

# 7.3.1 Resistividad Aparente:

Está regida por la **ley de Ohm** dice que la intensidad de la corriente que circula entre dos puntos de un circuito eléctrico es proporcional a la tensión eléctrica entre dichos puntos. Esta constante es la conductancia eléctrica, que es la inversa de la resistencia eléctrica.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



La intensidad de corriente que circula por un circuito dado es directamente proporcional a la tensión aplicada e inversamente proporcional a la resistencia del mismo.

La ecuación matemática que describe esta relación es:

$$I = GV = \frac{V}{R}$$

Donde, I es la corriente que pasa a través del objeto en amperios, V es la diferencia de potencial de las terminales del objeto en voltios, G es la conductancia en siemens y R es la resistencia enohmios ( $\Omega$ ). Específicamente, la ley de Ohm dice que R en esta relación es constante, independientemente de la corriente.

## Definición.

Es la variable experimental que expresa los resultados de las mediciones en TGe y la que se toma como base para la inversión y posterior interpretación. Esta está definida por la ecuación:

$$\rho a = K = \frac{\Delta V}{I}$$

Donde K es la constante de normalización de cada dispositivo o factor geométrico ,  $\Delta V$  es la diferencia de potencial medido sobre el terreno, e I la corriente inyectada.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



## Su relación con los elementos del Subsuelo.

En la Tabla 16., se observan los valores de resistividad de las rocas más comunes, materiales de suelo y algunas sustancias químicas (Keller y Frischknecht 1966, Daniels y Alberty 1966, Orellana 1982).

El suelo es una mezcla de partículas sólidas, gases, agua y otros materiales orgánicos e inorgánicos. Esta mezcla hace que la resistividad del suelo aparte de depender de su composición intrínseca, dependa de otros factores externos como la temperatura, la humedad, presión, etc. que pueden provocar que un mismo suelo presente resistividades diferentes con el tiempo. De entre todos los factores, la humedad es el más importante; además, es el que se puede alterar más fácilmente mediante la lluvia o el riego del suelo.

Diferentes contenidos de humedad en un mismo terreno darían lugar a resistividades diferentes que podrían llevarnos a interpretaciones erróneas de los materiales constituyentes del suelo. En la Tabla 16. se encuentra un conjunto de valores típicos de resistividad de geomateriales.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Tabla 16. Resistividades de algunos suelos y rocas.

| Material                                               | Resistividad (Ωm) |  |
|--------------------------------------------------------|-------------------|--|
| Basamento. Roca sana con diaclasas espaciadas          | >10000            |  |
| Basamento. Roca fracturada                             | 1500-5000         |  |
| Basamento. Roca fracturada saturada con agua corriente | 100-2000          |  |
| Basamento. Roca fracturada saturada con agua salada    | 1-100             |  |
| Gruss no saturado                                      | 500-1000          |  |
| Gruss saturado                                         | 40-60             |  |
| Saprolito no saturado                                  | 200-500           |  |
| Saprolito saturado                                     | 40-100            |  |
| Gravas no saturadas                                    | 500-2000          |  |
| Gravas saturadas                                       | 300-500           |  |
| Arenas no saturadas                                    | 400-700           |  |
| Arenas saturadas                                       | 100-200           |  |
| Limos no saturados                                     | 100-200           |  |
| Limos saturados                                        | 20-100            |  |
| Limos saturados con agua salada                        | 5-15              |  |
| Arcillas no saturadas                                  | 20-40             |  |
| Arcillas saturadas                                     | 5-20              |  |
| Arcillas saturadas con agua salada                     | 1-10              |  |
| Andosoles secos                                        | 1000-2000         |  |
| Andosoles no saturados                                 | 300-1000          |  |
| Andosoles saturados                                    | 100-300           |  |

Fuente: Exploracion Geotecnica-Relaciones Geoelectricas- DANIEL EDUARDO ARIAS.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



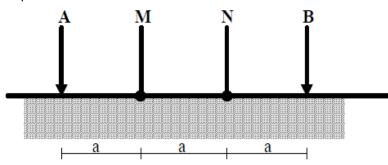
# 7.3.2 Dispositivos:

Un dispositivo es un arreglo de electrodos formado con dos pares de electrodos, dos emisores y dos receptores. A través de los electrodos emisores C1C2 se inyecta la corriente continua al terreno midiendo su intensidad con un miliamperímetro en serie, y a través del segundo par se mide la diferencia de potencial entre los electrodos P1P2 con un Milivoltímetro. Se tienen arreglos donde uno o dos electrodos se conectan a una distancia lo suficientemente grande, denominados remotos o infinitos, a la cual no producen perturbaciones en la zona de estudio.

En cualquier dispositivo electródico, si conocemos el factor geométrico k, la corriente eléctrica l'inyectada por los electrodos A y B, y la diferencia de potencial entre los electrodos M y N, podemos calcular la resistividad aparente mediante ρ=k ΔV/I. El dispositivo utilizado en en la tomografía realizada fue el siguiente:

# 7.3.2.1 Dispositivo Wenner.

Los electrodos se disponen equidistantes sobre una línea en el orden AMNB (Figura 28)






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



Figura 28. Dispositivo Wenner.



Fuente: Aplicaciones de la tomografía eléctrica 2-d al estudio del subsuelo Javier S. Salgado. El factor geométrico del dispositivo se deduce de K=2π(1/AM-1/AN-1/BM+1/BN)^(-

## 7.4 METODOLOGIA

1), donde  $K=2 \pi a$ .

En su sentido más amplio la Tomografía es una técnica geofísica para el estudio del subsuelo que consiste en determinar la distribución de un parámetro físico característico del mismo dentro de un ámbito espacial limitado, a partir de un número muy elevado de medidas realizadas desde la superficie del terreno o desde sondeos.

La Tomografía eléctrica tiene por objetivo específico determinar la distribución real de la resistividad del subsuelo en el ámbito comprendido entre dos sondeos o bien hasta un cierto rango de profundidad a lo largo de un perfil de medida, a partir de los valores de resistividad aparente obtenidos mediante medidas realizadas por métodos convencionales de corriente continua. Un factor clave de esta técnica es el número y distribución de las medidas de campo ya que de él depende tanto su resolución como la profundidad de investigación. Como regla general, un estudio mediante Tomografía eléctrica requiere la obtención de un número muy elevado





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR Universidad Pedagógica y Tecnológica de Colombia

EJECUTOR
CONVENIO No.
038/2012.

de datos, con un pequeño espaciado entre medidas para conseguir la necesaria resolución lateral que viene dada por la siguiente formula:

 $d = Xtotal / N^{\circ}electrodos$ 

Donde:

d= Distancia entre elctrodos

Xtotal= Distancia de la línea extendida

N°electrodos = electrodos a utilizar

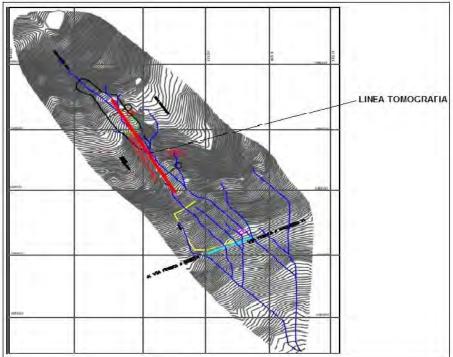
También que las medidas se realicen involucrando de forma progresiva varios rangos de profundidad.

El resultado final de este tipo de estudio es una sección distancia-profundidad con la distribución de la resistividad real del subsuelo, fácilmente comprensible en términos geológicos o geotécnicos. Para obtener estos resultados se procede a insertar los parámetros para el cálculo y la medición de las resistividades en campo, utilizando el método o dispositivo de Wenner.

Para la realización de las tomografías en Vereda la Estancia grande, del municipio de Ventaquemada, se utilizó el equipo TERRAMETER LS 04-064-250 propiedad de la U.P.T.C., con 2 carretes de 210 mts cada uno, 41 electrodos conectados cada uno respectivamente al equipo, para obtener así la siguiente línea con su respectivo análisis.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



## 7.4.1 TOMOGRAFIA N°1

Localizada en la parte media del deslizamiento, coordenadas parte inicial X: 1060928, Y: 1086284, parte final X: 1061033, Y: 1086122, orientación N25°E, con una longitud de 205 mts., profundidad obtenida de 36.9 mts., y los electrodos conectados a una distancia de 5.0 mts cada uno.

Figura 29. Localización línea de tomografía.



Fuente: Resultado del estudio.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Fotografía 17. Parte media del deslizamiento y equipo TERRAMETER LS 04-064-250.



Fuente: Registro fotográfico.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



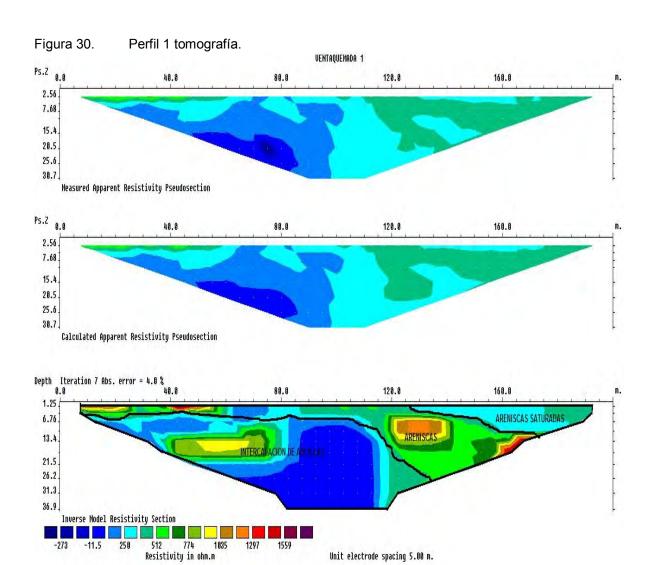
Fotografía 18. Parte media del deslizamiento.



Fuente: Registro fotográfico.

Tabla 17. Clasificación de materiales

| MATERIAL | PROFUNDIDAD<br>(m) | RESISTIVIDAD<br>(Ω*m) | INTERPRETACIÓN<br>GEOLÓGICA  |
|----------|--------------------|-----------------------|------------------------------|
| 1        | 6.76 – 36.9        | -273 – 40             | Intercalación de<br>Arcillas |
| 2        | 1.25 - 26.9        | 250 - 1500            | Areniscas                    |
| 3        | 1.25 - 13.4.       | 70 - 250              | Areniscas saturadas          |


Fuente: Resultado del estudio.



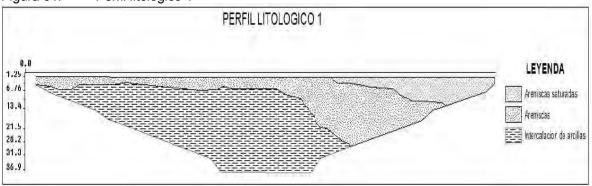


FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR





Fuente: Resultado del estudio.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



Figura 31. Perfil litológico 1



Fuente: Resultado del estudio.

## 7.4.2 RESULTADOS

Con ayuda del software Res2DINVX64, se relacionaron datos de las respectivas resistividades de los materiales del área obtenidas por el equipo, resultando así el modelamiento del talud, donde se observan que el área está conformada por tres unidades Geoelectricas bien definidas, donde encontramos niveles de arcillas con rangos de resistividades que oscilan entre -273 – 40  $\Omega^*$ m, los valores negativos se deben a grietas de gran magnitud, areniscas con resistividades que van desde 250 - 1500  $\Omega^*$ m, este valor de resistividad es bastante grande debido a que se pueden encontrar grava, areniscas saturados con resistividades entre 70 - 250  $\Omega^*$ m, ver figuras 5 y 6.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



#### 8 GEOTECNIA

En este capítulo se consignan los aspectos relacionados con la evaluación geotécnica de los fenómenos de remoción en masa (FRM) presentes en la vereda Estancia Grande, municipio de Ventaquemada, sucedidos desde hace unos años, y que han evolucionado hasta afectar considerablemente viviendas presentes en la zona.

Las principales fuentes de información para el estudio geotécnico fueron la observación de campo, los datos obtenidos de la exploración geofísica y geológica, la exploración directa y las pruebas de laboratorio.

A partir de la información obtenida, se realizó el diagnóstico de los distintos fenómenos de remoción en masa, estableciendo hipotéticamente los mecanismos de falla y planteando las medidas aplicables para el tratamiento de las zonas inestables.

## 8.1 EXPLORACIÓN DE CAMPO

# 8.1.1 Sondeos geotécnicos

## 8.1.1.1 Exploración indirecta del sub suelo

La exploración indirecta del sub suelo se realizó por medio de tomografías geoeléctricas como se observa en el numeral 7, el cual se llevó a cabo después de determinar que el método geoeléctrico convencional SEV, no aporta ningún tipo de información importante cuando se aplica al estudio de deslizamientos por tratarse de un medio muy fracturado con altas pendientes además de ser un material removido y saturado.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



# 8.1.1.2 Exploración directa del sub suelo.

La exploración directa del sub suelo consiste en la realización una apique y una trinchera, De estos se tomaron muestras alteradas e inalteradas para realizar los ensayos pertinentes para caracterizar los materiales presentes en esta zona. Además se realizaron sondeos a profundidades de que van de 0 hasta los 5.20 metros de y sus ubicaciones se relacionan en la siguiente Tabla 18. ; De estos se realizaron los también ensayos de propiedades índices y propiedades mecánicas.

Tabla 18. Coordenadas de los sondeos realizados

| Ventaquemada |             |           |             |
|--------------|-------------|-----------|-------------|
| Sondeo       | Coordenadas |           | Profundidad |
| Jonaeo       | Este        | Norte     | (metros)    |
| Apique 1     | 1,060,934   | 1,086,263 | 2.4         |
| Apique 2     | 1,061,009   | 1,086,163 | 1           |
| Apique 3     | 1,060,998   | 1,086,161 | 0.8         |
| sondeo 1     | 1,061,035   | 1,086,161 | 5.20        |
| sondeo 2     | 1,061,144   | 1,086,088 | 5           |

Fuente: Resultados de estudio.

De estos se obtuvieron perfiles geotécnicos del sitio como se observa en la Figura 32 . Como también para los apiques Fotografía 19. .





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Fotografía 19. Perforación realizada en la zona de estudio



Fuente: Registro fotográfico del proyecto.

También se caracterizó las rocas aledañas al deslizamiento y se realizó la toma de muestras tamaño puño para caracterizar sus propiedades físicas y algunos pequeños bloques para realizar ensayos en laboratorio como tilt test y cargas por punta con el fin de conocer su resistencia y a la vez en estos puntos se realizó el mapeo, donde se hizo el levantamiento de discontinuidades.

Los puntos de toma de muestras se relacionan en la Tabla 19. .

Tabla 19. Puntos de tomas de muestras de rocas aflorantes.

| Formación | E       | N       | Z    |
|-----------|---------|---------|------|
| Kg2       | 1060949 | 1086396 | 2911 |
| Kg1       | 1084542 | 1090036 | 2961 |
| Kscn      | 1060987 | 1086396 | 2899 |

Fuente: Resultados del Proyecto





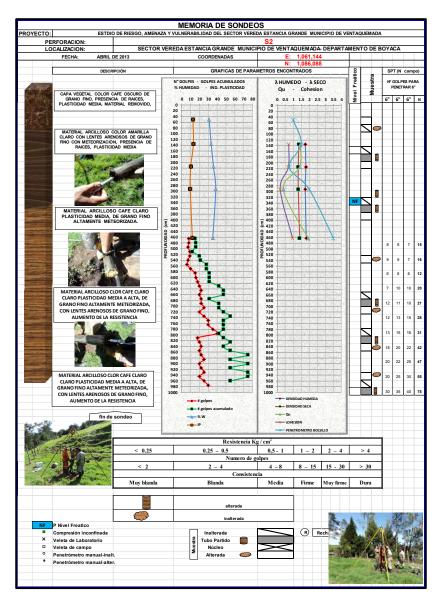
FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Fotografía 20. Punto de rocas aflorantes en la cercanía del deslizamiento y zona de mapeo geológico.



Fuente: Registro fotográfico del proyecto.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Figura 32. Sondeo Geotécnico S2



Fuente: Resultados del estudio.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



## 8.2 CARACTERIZACIÓN DEL SUELO Y SUBSUELO

## 8.2.1 Trabajos de Laboratorio

De acuerdo con el muestro anterior y con las muestras recolectadas tanto en los sondeos (Suelos) y en los afloramientos (Rocas), en el laboratorio de Mecánica de Suelos y Rocas de la UPTC Sede Sogamoso se realizaron pruebas índice (Límites de Atterberg, Granulometría, humedad natural, peso unitario), compresión inconfinada y corte directo. A demás de propiedades físicas y mecánicas de las rocas presentes en la zona de estudio, a continuación se realiza una descripción de las propiedades físicas y mecánicas de los suelos y rocas concluyendo con un numeral con los resúmenes de los resultados de estas pruebas.

## 8.2.2 Trabajos de Laboratorio

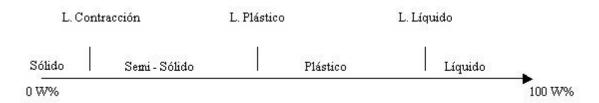
De acuerdo con el muestro anterior y con las muestras recolectadas tanto en los sondeos (Suelos) y en los afloramientos (Rocas), en el laboratorio de Mecánica de Suelos y Rocas de la UPTC Sede Sogamoso se realizaron pruebas índice (Límites de Atterberg, Granulometría, humedad natural, peso unitario), compresión inconfinada y corte directo. A demás de propiedades físicas y mecánicas de las rocas presentes en la zona de estudio, a continuación se realiza una descripción de las propiedades físicas y mecánicas de los suelos y rocas concluyendo con un numeral con los resúmenes de los resultados de estas pruebas.

## 8.2.2.1 Propiedades índices de los suelos

<u>Límites de Atterberg:</u> El contenido de agua con que se produce el cambio de estado varía de un suelo a otro y en mecánica de suelos interesa fundamentalmente conocer el rango de humedades, para el cual el suelo presenta un comportamiento plástico, es decir, acepta deformaciones sin romperse






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



(plasticidad), es decir, la propiedad que presenta los suelos hasta cierto límite sin romperse.

Atterberg definió tres límites para la clasificación del suelo; el de retracción o consistencia que separa el estado de sólido seco y el semisólido, el límite plástico, que separa el estado semisólido del plástico y el límite líquido, WL, que separa el estado plástico del semilíquido; estos dos últimos límites (los más usados en la práctica) se determinan con la fracción de suelo que pasa por el tamiz n.º 40 A.S.T.M (0,1 mm).

Figura 33. Límites de Atterbeg



Fuente: Juárez Badillo y Rico Rodríguez

<u>Humedad natural</u>: Se denomina humedad natural o contenido de agua de un suelo, a la relación entre el peso de agua contenido en el mismo y el peso de su fase sólida, este se expresa como porcentaje.

**Peso unitario:** El peso unitario es definido como la masa de una masa por unidad de volumen. El peso unitario del suelo varía de acuerdo al contenido de agua que tenga el suelo, que son: húmedo (no saturado), saturado y seco.

**Granulometría:** Se denomina clasificación granulométrica o granulometría, a la medición y gradación que se lleva a cabo de los granos de una formación sedimentaria, de los materiales sedimentarios, así como de los suelos, con fines de análisis, tanto de su origen como de sus propiedades mecánicas, y el cálculo





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



de la abundancia de los correspondientes a cada uno de los tamaños previstos por una escala granulométrica.

## 8.2.2.2 Propiedades índices de las rocas

La roca como agregado de mineral presenta características físicas que influyen en su respuesta mecánica, además algunos de estos parámetros son importantes en el diseño y construcción de obras ingenieriles.

Se establecieron propiedades físicas tales como:

Densidad total de la muestra ( $\rho$ )

Densidad seca de la muestra (ρ<sub>d</sub>)

Densidad saturada de la muestra (ρ<sub>sat</sub>)

Porcentaje de humedad ( $\omega$  %)

Porcentaje de saturación (S%)

Porosidad (n%)

Relación de vacíos (e)

Peso específico (γ (KN/m³))

Peso específico seco (γ<sub>d</sub> (KN/m3))

Peso específico saturada ( $\gamma_{sat}$  (KN/m3))

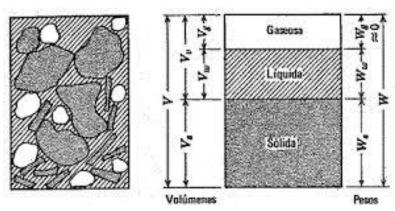
La determinación de las propiedades físicas se basa en el establecimiento de los pesos y volumen de la probeta o muestra de la roca de roca y/o mineral, siendo los equipos y accesorios en la mayoría de los casos los de un laboratorio químico y/o metalúrgico. Y están constituidas por:

Una balanza de precisión en grs.

Un horno ventilado.

Vasos de precipitación.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



## Agua destilada.

Figura 34. Manera de establecer las fases de la roca



Fuente: Juárez Badillo y Rico Rodríguez

Fotografía 21. Medición de volumen de la muestra para establecer propiedades físicas de la roca.



Fuente: Registro Fotográfico

## 8.2.2.3 Propiedades mecánicas de los suelos

Compresión no confinada: El objetivo primario del ensayo de compresión no confinada es obtener rápidamente un valor aproximado de la resistencia a la





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



compresión de los suelos que tienen suficiente cohesión para ser sometidos a dicho ensayo.

Fotografía 22. Muestra fallada en el ensayo de compresión no confinada.



Fuente: Resultado del estudio.

<u>Corte directo:</u> Con el ánimo de establecer la resistencia al corte de algunos de los materiales más débiles dentro del área de estudio, se llevaron a cabo pruebas de corte directo en los suelos presentes para establecer las condiciones de resistencia disponible en la zona y llegar a realizar el análisis con respecto a las fuerzas actuantes.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Fotografía 23. Muestras a las que se les realizo la prueba de corte directo.



Fuente: Resultado del estudio.

**Nota (\*):** Debido al grado de alteración se optó por realizar las pruebas de corte directo con muestras remoldeadas, esto tanto como para las pruebas de corte directo como para compresión no confinada.

## 8.2.3 Propiedades mecánicas de las rocas

Ensayo de Tilt Test: Este ensayo permite estimar el ángulo de rozamiento de una discontinuidad o ángulo de fricción básico de la matriz rocosa para condiciones de bajos niveles de esfuerzo normal.

Fotografía 24. Ensayo de Tilt Test



Fuente: Registro Fotográfico del estudio.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



<u>Carga puntual</u>: También denominado PLT (point load test) o ensayo Franklin. Se utiliza para determinar la resistencia a compresión simple de especímenes de roca, a partir de una correlación con el índice de carga puntual corregido (Is50), obtenido de este ensayo.

Fotografía 25. Ensayo de carga por punta o ensayo Franklin.



Fuente: Registro Fotográfico del Proyecto.

## 8.2.4 Resumen de resultados

En general los ensayos realizados reflejan la particularidad de materiales finos en el subsuelo según la Carta de Clasificación de Casagrande, los suelos fueron clasificados dentro del grupo CL (material limoso de plasticidad media a alta) correspondientes al material de relleno, arcillas limosas, con peso unitario de 1.1 – 1.6 gr/cm3, con limite líquido < 50% e IP entre 2.5 y 33%.

Los resultados de las propiedades mecánicas reflejan una resistencia a la compresión simple de 0.3–2.02 kg/cm2, cohesión de 0.1 – 1 Kgf/cm2, ángulos de fricción entre 10° y 21°. Estos resultados de las propiedades físicas y mecánicas





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



se utilizaron para el análisis de estabilidad. En el anexo 4, se presentan los formatos correspondientes a los ensayos de laboratorio, de los cuales se presenta una tabla resumen (Tabla 20.).

En cuanto a las rocas presentes se obtuvieron pesos específicos de entre los valores de 18 a 28 kN/m $^3$  en las diferentes rocas, con ángulos de rozamiento residual de que varían entre 33 $^\circ$  y 53 $^\circ$  y resistencias obtenidas por el ensayo de carga puntual de 1 – 36 MPa.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



#### Tabla 20. Resumen de Resultados

|                    |               |                    |              |           | 0.1172                 |                | ORATO         | DRIO D         | E MEC         | CANICA             | OGICA DE<br>DE SUEL |          |          |                  |                  |                  |                   |              |
|--------------------|---------------|--------------------|--------------|-----------|------------------------|----------------|---------------|----------------|---------------|--------------------|---------------------|----------|----------|------------------|------------------|------------------|-------------------|--------------|
|                    |               |                    |              |           |                        |                | SE            | ECCIO          | NAL S         | OGAMO              | oso                 |          |          |                  |                  |                  |                   |              |
|                    |               |                    |              |           |                        |                | MEN           | MORI           | A DE          | SONE               | DEOS                |          |          |                  |                  |                  |                   |              |
| PROYECTO           | 0:            |                    |              | E         | STDIO DE RIE           | SGO, AME       | NAZA Y        | VULNER         | RABILID       | AD DEL S           | ECTOR VER           | EDA ESTA | NCIA GRA | ANDE MUNICI      | PIO DE VEN       | TAQUEMADA        |                   |              |
| PERFO              | RACION:       |                    |              |           |                        |                |               |                |               |                    |                     |          |          | ONDEOS 1 -2      |                  |                  |                   |              |
| LOCALI             | ZACION:       |                    |              |           | SEC                    | FOR VER        | <b>EDA ES</b> | TANCI          | AGRA          | NDE MU             | INICIPIO DI         | E VENTA  | QUEMA    | DA- DEPART       | AMENTO D         | DE BOYACA        |                   |              |
|                    | FEC           | HA:                |              | MAYO      | DE                     | 2013           |               |                |               |                    |                     |          |          |                  |                  |                  |                   |              |
|                    | inalt         | erada              |              |           |                        |                |               |                |               |                    |                     |          |          |                  |                  |                  |                   |              |
|                    | alte          | rada               |              |           |                        |                |               |                |               |                    |                     |          |          |                  |                  |                  |                   |              |
|                    |               |                    |              |           |                        |                |               |                |               |                    |                     |          |          |                  |                  | AL CORTE SUELO   |                   |              |
| CONDEO /           |               | T100 D5            | 2225         | COORD     | ENADAS                 |                | PROP          | IEDADE:        | S FISICA:     | S SUELOS<br>CLASIF | P.T.N° 200          | CORTE D  | DIRECTO  | λ HUMEDO         | λSECO            | COMPRESION I     | NCONFINADA        | PENETROMETRO |
| SONDEO / APIQUE N° | MUESTRA<br>N° | TIPO DE<br>MUESTRA | PROF.        | E         | N                      | Wn (%)         | ш             | LP             | IP            | (U.S.C.)           | P.T.N° 200          | ф        | c        | Peso<br>Unitario | Peso<br>Unitario | qu               | с                 |              |
| APIQUE N°          |               | MUESTRA            | (m)          |           |                        |                |               |                |               |                    |                     |          |          | Unitario         | Unitario         |                  |                   | Kg/cm²       |
|                    | 1             |                    | 1,40         | 1,060,934 | 1,086,263              | 44,10          | 51,18         | 18,18          | 33,00         | СН                 | 7,598               |          |          |                  |                  |                  |                   | > 4,0        |
| 1                  | 2             |                    | 1,90         | 1,060,935 | 1,086,264              | 53,62          | 37,85         | 17,86          | 19,99         | CL                 | 12,058              |          |          | 1,6057           | 1,1075           | 0,509            | 0,254             | >4,0         |
|                    | 3             |                    | 2,40         | 1,060,936 | 1,086,265              | 45,05          |               |                |               |                    | 5,263               | 10,204   | 1,12     | 1,7116           | 1,2406           | 0,673            | 0,337             | > 4,0        |
| 2                  | 1             |                    | 1,00         | 1,061,009 | 1,086,163              | 21,20          | 49,95         | 26,09          | 23,86         | CL                 | 0,744               |          |          |                  |                  |                  |                   | > 4,0        |
| 3                  | 1             |                    | 0,85         | 1,060,998 | 1,086,161              | 23,81          | 41,7          | 29,82          | 11,88         | ML                 | 10,598              |          |          |                  |                  |                  |                   | > 4,0        |
| AFLORAMIENTO       | 1             |                    | 0,40         | 1,060,934 | 1,086,263              | 2,65           |               |                |               |                    |                     |          |          |                  |                  |                  |                   | >4,0         |
|                    | 2             |                    | 0,86         | 1,060,935 | 1,086,264              | 31,85          |               |                |               |                    | 3,42                | 12,8438  | 0,8205   | 1,8243           | 1,3194           | 1,332            | 0,666             | >4,1         |
| IUESTRA DESLIZADA  | 1             |                    | 0,00         | 1,061,035 | 1,086,180              | 10,59          | 33,25         | 22,22          | 11,03         | CL                 | 3,275               |          |          |                  |                  |                  |                   | > 4,0        |
|                    | 1             |                    | 1,10         | 1,061,083 | 1,086,161              | 31,68          | 30,4          | 19,61          | 10,79         | CL                 | 4,13                | 21,006   | 1,140    | 1,7173           | 1,2994           | 0,8378           | 0,4189            | 1,5          |
|                    | 2             |                    | 1,95         | 1,061,083 | 1,086,161              | 50,14          | 36,91         | 23,33          | 13,58         | CL                 | 4,409               |          |          | 1,9087           | 1,2145           | 2,0211           | 1,01055           | 1,75         |
| S 1                | 3             |                    | 3,00         | 1,061,083 | 1,086,161              | 65,80          | 33,26         | 25,58          | 7,68          | ML-OL              | 5,793               |          |          | 1,7693           | 1,6628           | 1,0889           | 0,54445           | 1,25         |
|                    | 5             |                    | 3,80<br>4.20 | 1,061,083 | 1,086,161<br>1.086.161 | 44,20<br>47.47 | 40,87         | 24,39<br>41.67 | 16,48<br>2,57 | ML-OL              | 2,974<br>0.072      |          |          | 1,7177<br>1.9692 | 1,2254<br>1.406  | 1,4623<br>0.5546 | 0,73115<br>0.2773 | 2            |
|                    | 6             |                    | 5.70         | 1,061,083 | 1,086,161              | 44.09          | 44,24         | 41,6/          | 2,5/          | IVIL-UL            | 0,072               |          |          | 1,3092           | 1,406            | 0,5546           | 0,2//3            | 3,5          |
|                    | 1             |                    | 0.80         | 1.061,083 | 1.086.088              | 30.80          | 36.75         | 24.19          | 12.56         | CL                 | 3.126               | 14.359   | 0.568    |                  |                  |                  |                   | 3,3<br>1     |
|                    | 2             |                    | 1,50         | 1,061,144 | 1,086,088              | 33.25          | 35,67         | 22.58          | 13.09         | _                  | 2.246               | 14,333   | 0,500    | 1.7521           | 1.351            | 1.4319           | 0.71595           | 1,5          |
| S2                 | 3             |                    | 2,40         | 1,061,144 | 1,086,088              | 35,80          | 37,04         | 26,98          | 10,06         |                    | 5,476               |          |          | 1,7852           | 1,3146           | 1,3963           | 0,69815           | 0,75         |
| - <del>-</del>     | 4             |                    | 3,00         | 1,061,144 | 1,086,088              | 38,39          | 47,24         | 37,74          | 9,50          | ML-OL              | 2,858               |          |          | 1,7485           | 1,3148           | 0,3849           | 0,19245           | 2            |
|                    | 5             | (I E 43)           | 5.00         | 1.061.144 | 1.086.088              | 35.00          | 47.97         | 36.00          | 11.97         | ML-OL              | 2.144               |          |          | 1.8135           | 1,4066           | 1.9276           | 0.9638            | 3.5          |

Fuente: Resultados del proyecto.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



## Tabla 21. Resumen de resultados ensayos de laboratorio en rocas

| U           | UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOMBIA  LABORATORIO DE MECANICA DE SUELOS           |                    |                                       |        |           |        |                           |           |             |            |            | M BIA        |             | •              | -      | R      |      |  |
|-------------|-----------------------------------------------------------------------------------------------|--------------------|---------------------------------------|--------|-----------|--------|---------------------------|-----------|-------------|------------|------------|--------------|-------------|----------------|--------|--------|------|--|
| Universidad | d Pedagógica y<br>a de Colombia                                                               | The same           |                                       |        |           | LAB    |                           |           |             |            | LOS        |              |             |                |        |        | D.K. |  |
| Techologica | a de Calemana                                                                                 | PLAYADINE          | · · · · · · · · · · · · · · · · · · · |        |           |        | SE                        | CCIONAL   | SOGAMO      | )SU        |            |              |             |                |        | 7      |      |  |
|             |                                                                                               |                    |                                       |        |           |        |                           |           |             |            |            |              |             |                |        |        |      |  |
|             | \/=0=0                                                                                        | T                  |                                       |        |           |        |                           |           | ALISIS D    |            |            |              |             |                |        |        |      |  |
| PRO         | YECTO:<br>MUESTRAS:                                                                           | <u> </u>           |                                       |        | ESTDIO DE | ,      | O BLOQUE                  | VULNERABI | IDAD DEL SE | CTOR VEREL | A ESTANCIA | GRANDE MU    | INICIPIO DE | VENTAQUEM      | ADA    |        |      |  |
| L           | LOCALIZACION: SECTOR VEREDA ESTANCIA GRANDE MUNICIPIO DE VENTAQUEMADA- DEPARTAMENTO DE BOYACA |                    |                                       |        |           |        |                           |           |             |            |            |              |             |                |        |        |      |  |
|             | FECHA: MAYO DE 2013                                                                           |                    |                                       |        |           |        |                           |           |             |            |            |              |             |                |        |        |      |  |
|             |                                                                                               |                    |                                       |        |           |        |                           |           |             |            |            |              |             |                |        |        |      |  |
|             |                                                                                               |                    |                                       |        |           |        |                           |           |             |            |            |              |             |                |        |        |      |  |
|             | IN                                                                                            | ALTERADA - BLOQ    | -                                     |        |           |        | PROPIEDADES FISICAS ROCAS |           |             |            |            |              |             | ESISTENCIA A   |        |        |      |  |
|             |                                                                                               |                    |                                       | COORDE | NADAS     |        |                           |           |             |            | -<br>I     | 1            | CARGA F     |                | TILT   | ANGULO |      |  |
| DESCRIPCION | MUESTRA<br>N°                                                                                 | TIPO DE<br>MUESTRA |                                       | E      | N         | w %    | S %                       | n %       | е           | y (KN/m³)  | yd (KN/m³) | ysat (KN/m³) | orc1<br>MPa | gc2<br>Kgf/cm2 | TEST   | REPOSO |      |  |
|             | M1 001                                                                                        | WIDESTRA           | 1.08                                  | 86.396 | 1.060.987 | 8.2215 | 15.8866                   | 93.5311   | 2.2337      | 20.3131    | 18.8629    | 28.0851      | 0.778       | 7.776          | 41.600 | u      |      |  |
|             | 1111 001                                                                                      |                    |                                       | ,      | .,,       | 0.22.0 | .0.0000                   | 00.0011   |             | 20.0.0.    | 10.0020    | 20.000       | ••          |                | 41.000 |        |      |  |
|             | M2 002                                                                                        |                    | 1,08                                  | 86,396 | 1,060,988 | 2.982  | 17.7755                   | 30.8929   | 0.0865      | 18.6352    | 18.0863    | 21.1323      |             |                | 39.100 |        |      |  |
|             | M3 002                                                                                        |                    | 1,08                                  | 86,396 | 1,060,949 | 4.1861 | 30.0663                   | 23.0232   | 0.0890      | 16.8923    | 16.2168    | 18.4869      | 0.860       | 8.600          | 34.600 | 36.752 |      |  |
|             | M4 003                                                                                        |                    | 1,08                                  | 86,387 | 1,060,889 | 4.3580 | 39.2294                   | 29.2319   | 0.1611      | 26.7482    | 25.6499    | 28.5321      | 0.645       | 6.446          | 53.100 |        |      |  |
|             | M5 004                                                                                        |                    | 1,08                                  | 86,425 | 1,060,891 | 0.9365 | 8.1629                    | 50.1178   | 0.1509      | 41.0779    | 40.7048    | 45.6464      | 0.603       | 6.032          | 34.800 |        |      |  |
|             | M6 004                                                                                        |                    | 1,08                                  | 86,425 | 1,060,891 | 0.6656 | 28.2213                   | 6.5603    | 0.0166      | 23.2577    | 23.1042    | 23.7510      | 36.082      | 360.820        | 32.800 |        |      |  |

Fuente: Resultados del proyecto.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



#### 8.3 Clasificación del Macizo Rocoso.

"Las clasificaciones de macizos rocosos fueron diseñadas u organizadas con la finalidad de obtener los parámetros geomecánicos que permitan un fácil manejo en el diseño de las obras de ingeniería. Los macizos rocosos, como medios discontinuos, presentan un comportamiento geomecánico complejo que, de una forma simplificada, puede ser estudiado y categorizado en función de su aptitud para distintas aplicaciones." (González de Vallejo, 2002). Para el estudio fueron utilizadas las clasificaciones en función del R.Q.D., la clasificación geomecánica de Bienawski (R.M.R.), y la clasificación del índice geológico de resistencia (GSI) propuesto por Hoek y Brown.

## 8.3.1 Índice de Calidad de la Roca (RQD):

EL RQD determina el grado de fracturación del macizo rocoso. Este parámetro se puede determinar a partir de núcleos de roca recuperados en sondeos con longitud mayor de 10cm; a partir del número volumétrico de juntas (Jv), como el número de discontinuidades por metro cúbico de macizo; ó, en función de la frecuencia de discontinuidades ( $\lambda$ ), que indica el número de juntas por metro lineal en el macizo. Para el proyecto se determinó por medio de la frecuencia de discontinuidades obtenida del mapeo geológico y de la descripción de las perforaciones de exploración. La determinación del RQD a partir de la frecuencia de discontinuidades se puede realizar por medio de la siguiente expresión que proporciona el valor teórico mínimo del RQD:

$$RQD = 100exp^{-0.1\lambda}(0.1\lambda + 1)$$





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



## Donde,

λ: Número de discontinuidades por distancia medida.

En profundidad se obtuvo el R.Q.D. por zona, a partir del registro detallado de las perforaciones. Los valores del parámetro RQD se representan en los siguientes rangos:

1: <25%: Muy Mala (MM)

2. 25-50: Mala (M)

3. 50-75: Regular(R)

4: 75-90: Buena (B)

5: 90-100: Muy Buena (MB)

Para las medidas superficiales tomadas en el mapeo geológico, se obtuvo un resultado de RQD dentro del rango **90-100**% para las rocas del Kg1 y **75-90**% para las rocas del Kscn, lo cual indica una muy buena calidad del macizo según los rangos establecidos para esta caracterización.

## 8.3.2 Clasificación Según el RMR:

Desarrollado por Bieniawski en 1973, con actualizaciones en 1979 y 1989, constituye un sistema de clasificaciones de macizos rocosos que permite a su vez relacionar índices de calidad con parámetros geotécnicos del macizo. Esta clasificación tiene en cuenta los siguientes parámetros geotécnicos:

- Resistencia a la compresión uniaxial de la matriz rocosa.
- Grado de fracturación en términos del RQD.
- Espaciado de las discontinuidades.
- Condiciones de las discontinuidades.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



- Condiciones de agua subterránea.
- Corrección por la orientación de las discontinuidades con respecto a la excavación.

La incidencia de estos parámetros en el comportamiento geomecánico de un macizo rocoso se expresa por medio del *índice de calidad RMR*, rock mass rating, que varía de 0 a 100. (Gonzales de Vallejo, 2002).

Los rangos para la clasificación del *índice de la calidad RMR* son de acuerdo a las siguientes clases:

I Muy Buena 100-81

II Buena 80-61

III Media 60-41

IV Mala 40-21

V Muy Mala menos a 20

Procesando los resultados para cada banco e intercalación de la prueba de resistencia a compresión simple, de R.Q.D., de las condiciones de discontinuidades, de las condiciones de agua subterránea de acuerdo a lo observado en campo y, realizando la corrección correspondiente, fue posible realizar la clasificación geomecánica del macizo rocoso. En la Tabla 22. Se muestra el resultado de la clasificación por el método RMR para los afloramientos presentes.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Tabla 22. Resumen de Resultados de la Clasificación RMR.

|                             |                       |                    |               | VENTAQ             | UEMADA        |                    |               |
|-----------------------------|-----------------------|--------------------|---------------|--------------------|---------------|--------------------|---------------|
| Parámetro de                | clasificación         | Aeren<br>(Ks       |               | Arenisca           | as (Kg1)      | Arenisca           | as (Kg2)      |
|                             |                       | Paráme<br>tro      | Valuaci<br>ón | Paráme<br>tro      | Valuaci<br>ón | Paráme<br>tro      | Valuaci<br>ón |
| Posistoncia                 | Compresión            | แบ                 | OII           | แบ                 | OII           | แบ                 | OII           |
|                             | (MPa)                 | 36,00              | 6             | 1                  | 1             | 0,8                | 1             |
| R.Q.I                       | D (%)                 | Buena+             | 15            | MB 20              |               | MB                 | 20            |
| •                           | ón de las<br>nuidades | Mj                 | 8             | Mj                 | 10            | Mj                 | 10            |
|                             | Rugosidad -<br>JRC    | Muy<br>Rugosa      | 6             | Rugosa             | 5             | Rugosa             | 5             |
| Estado de                   | Abertura              | Cerrada            | 6             | 0,1-<br>1mm        | 4             | 0,1-<br>1mm        | 4             |
| las<br>discontinuid<br>ades | Relleno               | Duro               | 5             | Suelos<br>Resi.    | 3             | Suelos<br>Resi.    | 3             |
| aues                        | Alteración            | Mod.<br>Alt.       | 3             | Lige.<br>Alt.      | 5             | Lige.<br>Alt.      | 5             |
|                             | Continuidad           | 1-3 m              | 3             | 3-10 m             | 3             | 3-10 m             | 3             |
| Agua sul                    | oterránea             | LIG.<br>HÚMED<br>O | 12            | LIG.<br>HÚMED<br>O | 12            | LIG.<br>HÚMED<br>O | 12            |
| VALORAC                     | CIÓN RMR              | 6                  | 4             | 6                  | 3             | 6                  | 3             |
| VALORA                      | CIÓN GSI              | 5                  | 9             | 5                  | 8             | 5                  | 8             |
| VALORAC                     | ION DE Q'             | 9,                 | 2             | 8,                 | ,3            | 8,                 | 3             |
| Ajuste                      | Favorables/M<br>edias | -5                 | -25           | -5                 | -25           | -5                 | -25           |
| VALO                        | R RMR                 | 59                 | 39            | 58                 | 38            | 58                 | 38            |
| Cla                         | III<br>Media          | IV Mala            | III<br>Media  | IV Mala            | III<br>Media  | IV Mala            |               |

Fuente: Resultados del estudio.



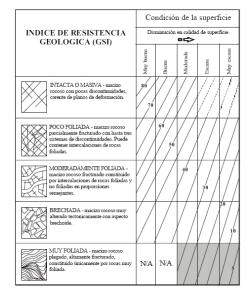


FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Estos valores fueron establecidos para los puntos relacionados en la Tabla 23. .

Tabla 23. Puntos de Control para realizar la clasificación geomecánica.


| Formación | Е       | N       | Z    |
|-----------|---------|---------|------|
| Kg2       | 1060949 | 1086396 | 2911 |
| Kg1       | 1084542 | 1090036 | 2961 |
| Kscn      | 1060987 | 1086396 | 2899 |

Fuente: resultados del estudio.

## 8.3.3 Clasificación Según el Índice Geológico de Resistencia (GSI):

Clasificación de macizos propuesta por Hoek y Brown, como un parámetro de condición del macizo rocoso en función de la condición estructural y del estado de las discontinuidades, para la aplicación del criterio generalizado de Hoek y Brown (2002), con el fin de establecer la envolvente de resistencia del macizo rocoso. Para su determinación se propone la utilización de la Figura 35.

Figura 35. Guía para la definición del Índice geológico de resistencia (GSI).



Fuente: Hoeke, 2002.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



Dada la sencillez de la guía para la determinación del GSI, y en cierta medida su subjetividad se propone para valores de GSI mayores que 25 que este pueda ser establecido a partir del valor de clasificación RMR89, teniendo en cuenta que se debe tomar el valor RMR sin corrección por orientación de discontinuidades y una valuación de condiciones de agua subterránea igual a 15. De acuerdo a lo anterior el valor de GSI 58 y 60.

## 8.4 CINEMÁTICA DE LOS MOVIMIENTOS

El comportamiento cinemático de los movimientos complejo y depende de varios factores (Pellegrino y otros, 2000):

El volumen o caudal de suelo en movimiento. Este volumen puede ser suministrado por un deslizamiento o por varios deslizamientos.

Las propiedades mecánicas de los materiales constitutivos del flujo, especialmente la resistencia y compresibilidad.

La pendiente o canal sobre el cual fluye el suelo.

El contenido de agua.

#### 8.5 CAUSAS DE LOS MOVIMIENTOS EN MASA

#### 8.5.1 Causas Reales

Las causas directas de los fenómenos de remoción en masa corresponden a aquellos factores inherentes a la naturaleza del terreno, que lo hace potencialmente inestable. La ocurrencia generalmente está relacionada con la saturación de los materiales subsuperficiales. Algunos suelos absorben agua muy





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



fácilmente y la saturación conduce a la formación del movimiento, también la susceptibilidad geomorfológica dadas las altas pendientes de algunos sectores, el tipo de material por tratarse de material coluvial, la condición de los materiales rocosos subyacentes al suelo, que se encuentra muy fracturado como producto del intenso fallamiento presente.

#### 8.5.2 Causas Inmediatas

Las causas inmediatas son también conocidas como detonantes de la inestabilidad, y corresponden a aquellos factores exógenos que producen en ultimas los movimientos del terreno.

Como detonantes de los eventos se han establecido los siguientes:

- La baja capacidad de capturar agua del material pero no de trasmitirla lo cual hacer que se generen grandes presiones las cuales generan la fuerza indicada para el desplazamiento del movimiento.
- El agua proveniente de las precipitaciones, que aunque no son frecuentes, han ocurrido en épocas que están asociadas a los mayores movimientos ocurridos.
- La baja resistencia al corte o de fricción del material en el cual se produce la superficie de falla.
- El mal uso de suelo, la ocupación de drenajes naturales para regadío de cultivos, tala y pastoreo.
- Los eventos sísmicos con alguna influencia en la zona se constituyen también en factores detonantes.
- Existen otros factores detonantes de menor importancia que pueden mencionarse, como las vibraciones y sobrecargas provenientes del tránsito vehicular, las sobrecargas asociadas a los botaderos y el mal uso del suelo.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



## 8.6 ANÁLISIS DE ESTABILIDAD Y MODELACIÓN GEOTÉCNICA

La modelación geotécnica tiene como objetivo verificar las condiciones actuales de estabilidad de la vereda piedra larga, el cual afecta las viviendas presentes en la zona.

Los modelos constituyen simplificaciones de problemas complejos acorde con la realiad, que permiten comprender mejor el funcionamiento de un sistema, son muy utilizados en todas las ciencias, aunque adquieren una gran relevancia en la Ingeniería Geológica, para este modelamiento se deben tener en cuenta tres aspectos fundamentales, Modelo Geológico, Modelo Geomecánico, para así poder llegar al Modelos Geotécnico del comportamiento del terreno (Modelo Numérico). El modelamiento geotécnico se establece con estos criterios, La exploración del subsuelo y las condiciones geológicas encontradas vistas en los numerales anteriores. Debido a la complejidad del fenómeno de remoción en masa se sectorizo en tres partes a las cuales se le realizo su respectivo análisis mostrado en los perfiles de plano de exploración geotécnica.

La modelación se realizó con el programa de estabilidad de taludes Slide V.6, desarrollado por la firma Rocscience de Canadá, el cual trabaja con el método de equilibrio límite y dovelas. Dentro de los métodos de análisis se consideraron el método de fellenius, el método de Bishop simplificado, y el método de Janbu Simplificado y Corregido.

## Modelamiento del comportamiento hidráulico.

Respecto al agua subterránea, a pesar que en las exploraciones no se encontró un nivel freático, se consideró su efecto con el coeficiente Ru, coeficiente que se define como:





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



$$Ru = \frac{u}{\sigma_v}$$

u: Presión de poros en la base de la dovela.

σ<sub>v</sub>: Esfuerzo vertical total en la base de la dovela.

El coeficiente Ru tiene un rango de variación de 0 (terreno seco) hasta 0,5 (terreno saturado).

## Efecto de la Aceleración Sísmica en el Modelo.

El Municipio de Ventaquemada se encuentra en una zona de Amenaza Sísmica Alta, de acuerdo a la Norma Colombiana Sismorresistente, por tanto el efecto sísmico es un aspecto relevante en la estabilidad de taludes. El efecto sísmico fue considerado con la aplicación de un análisis Pseudoestático a partir de la siguiente expresión:

$$\sum F = m * a$$

Donde,

F: Fuerzas.

m: Masa de la dovela.

a: aceleración.

La aceleración aplicada a cada masa, corresponde a un porcentaje de la aceleración de la gravedad, el cual se define de acuerdo a los coeficientes de aceleración horizontal y vertical propuestos en la norma sismorresistente y a un coeficiente de reducción del coeficiente de aceleración, de acuerdo a las características del terreno. Para el Municipio de Ventaquemada los coeficientes de aceleración horizontal (Aa) y vertical (Ad) son iguales a 0.16 y 0.08 respectivamente, de acuerdo a la NSR-10, sin embargo la versión vigente del código colombiano sismorresistente, indica que los coeficientes se tomen igual al





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



valor mayor, en este caso 0.20 y 0.20. El coeficiente de reducción de los coeficientes de aceleración para suelos y macizos rocosos con R.Q.D menores a 50%, es igual a 0.8 (Tabla 24.).

Tabla 24. Coeficientes de aceleración sísmica para el departamento Boyacá

| N°  | Municipio      | Código | Aa   | Av   | Zona de<br>Amenaza<br>Sísmica | Ae   | Ad   |
|-----|----------------|--------|------|------|-------------------------------|------|------|
| 1   | Tunja          | 15001  | 0.20 | 0.20 | Intermedia                    | 0.15 | 0.07 |
| 119 | Úmbita         | 15842  | 0.20 | 0.25 | Alta                          | 0.15 | 0.06 |
| 120 | Ventaquemada   | 15861  | 0.20 | 0.20 | Intermedia                    | 0.11 | 0.05 |
| 121 | Villa de Leyva | 15407  | 0.20 | 0.20 | Intermedia                    | 0.09 | 0.05 |
| 122 | Viracachá      | 15879  | 0.20 | 0.25 | Alta                          | 0.16 | 0.08 |
| 123 | Zetaquirá      | 15897  | 0.20 | 0.25 | Alta                          | 0.16 | 0.08 |

Fuente: Titulo A NSR - 10

Tabla 25. Coeficientes de reducción de coeficientes de aceleración sísmica

| Material                                                        | K <sub>ST</sub> / a <sub>máx</sub><br>Mínimo | Análisis de Amplificación<br>Mínimo                     |
|-----------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|
| Suelos, enrocados y macizos rocosos muy fracturados (RQD < 50%) | 0.80                                         | Ninguno                                                 |
| Macizos rocosos (RQD > 50%)                                     | 1.00                                         | Ninguno                                                 |
| Todos los materiales térreos                                    | 0.67                                         | Amplificación de onda<br>unidimensional en dos columnas |
| Todos los materiales térreos                                    | 0.50                                         | Amplificación de onda bidimensional                     |

**Fuente:** Tabla H.5.2-1 Titulo H NSR – 2010.

Por tanto el coeficiente de aceleración para análisis pseudoestático resulta:

$$k = k_{ST} * A_a = 0.8 \times 0.20 = 0.16$$

El método de cálculo utilizado para el caso fue el de equilibrio límite que define el factor de seguridad (F.S.) como:





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



$$F.S. = \frac{\text{Fuerzas resistentes}}{\text{Fuerzas actuantes}}$$

Con estos elementos se procedió a evaluar las condiciones de estabilidad de la zona.

#### 8.6.1 Análisis estructuralmente controlado

Se realizó un análisis estructuralmente controlado para determinar esas zonas donde es probable posibles mecanismos de falla por consecuencia de las estructuras geológicas, este se realizó respecto a las diferentes direcciones de las laderas presentes en la zona y se obtuvieron los siguientes resultados.

Tabla 26. Resultado análisis estructuralmente estructurado falla planar.

| ANÁLISIS CINEMÁTICO                                   |     |   |     |    |   |    |  |  |  |
|-------------------------------------------------------|-----|---|-----|----|---|----|--|--|--|
| PLANAR                                                |     |   |     |    |   |    |  |  |  |
| Rango DIRECCIÓN DE RANGO BUZAMIENTO LADERA BUZAMIENTO |     |   |     |    |   |    |  |  |  |
| 1                                                     | 174 | Α | 214 | 20 | Α | 27 |  |  |  |
| 2                                                     | 0   | Α | 40  | 20 | Α | 50 |  |  |  |
| 3                                                     | 64  | Α | 104 | 20 | Α | 54 |  |  |  |

Fuente: Resultados del estudio.

Tabla 27. Resultado análisis estructuralmente estructurado falla cuña.

| ANÁLISIS CINEMÁTICO                            |            |   |     |    |   |    |  |  |  |
|------------------------------------------------|------------|---|-----|----|---|----|--|--|--|
| CUÑA                                           |            |   |     |    |   |    |  |  |  |
| Rango DIRECCIÓN DE RANGO BUZAMIENTO BUZAMIENTO |            |   |     |    |   |    |  |  |  |
| 1                                              | 102        | Α | 142 | 23 | Α | 90 |  |  |  |
| 2                                              | 2 64 A 104 |   |     |    |   |    |  |  |  |
| 3                                              | 85         | Α | 125 | 3  | Α | 90 |  |  |  |

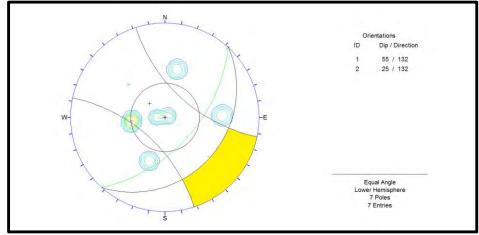
Fuente: Resultados del Estudio.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 




Tabla 28. Resultado análisis estructuralmente estructurado falla cuña.

| ANÁLISIS CINEMÁTICO |                                      |   |     |    |   |    |  |  |  |  |
|---------------------|--------------------------------------|---|-----|----|---|----|--|--|--|--|
| VOLTEO              |                                      |   |     |    |   |    |  |  |  |  |
| Rango               | DIRECCIÓN DE Rango BUZAMIENTO LADERA |   |     |    |   |    |  |  |  |  |
| 1                   | 344                                  | Α | 34  | 65 | Α | 90 |  |  |  |  |
| 2                   | 234                                  | Α | 284 | 65 | Α | 90 |  |  |  |  |
| 3                   | 150                                  | Α | 200 | 65 | Α | 90 |  |  |  |  |

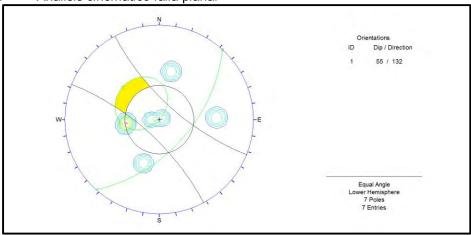
Fuente: Resultados del estudio.

Las Tabla 26. Tabla 27. Tabla 28. reflejan los posibles rangos de dirección de buzamiento de las laderas y la inclinación que deben cumplir para que cada una de las fallas acurra; estas se obtienen tras analizar cada una de las estructuras presentes en esta zona como se observa en las Figura 36, Figura 37, Figura 38.

Figura 36. Análisis cinemático, falla por volcamiento



Fuente: Resultados del estudio.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR

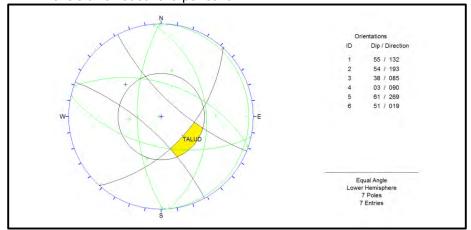



Figura 37. Análisis cinemático falla planar



Fuente: Resultados del estudio.

Figura 38. Análisis cinemático falla por cuña



Resultados del Estudio.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



## 8.7 Análisis estructuralmente no controlado

Este análisis se consideró para el sitio donde ya se evidencio el movimiento en la parte de los depósitos, aunque no obstante también se consideran las rocas que intervienen. En este análisis se observan los siguientes perfiles A–A', B–B'. La parte superior del deslizamiento se observa en la Fotografía 26. Parte media en la Fotografía 27. Y la parte baja en baja Fotografía 28.

Fotografía 26. Parte superior del movimiento



Fuente: Resultados de la investigación.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Fotografía 27. Parte media del movimiento



Fuente: Resultados de la investigación.

Fotografía 28. Parte baja del movimiento



Fuente: Resultados del proyecto.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



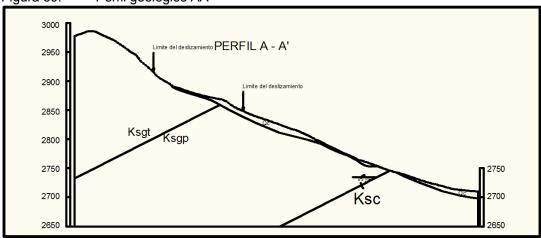
El modelo grafico el modelo analizado relaciona los datos obtenidos de la campaña de exploración geológica y geotécnica. La parte de geología aporta el perfil geológico y los parámetros mecánicos se obtienen en de los resultados de los diferentes ensayos anteriormente relacionados en el trabajo de laboratorio.

Las propiedades Físico-mecánicas utilizadas son resultado de los diferentes ensayos realizados donde se utilizaron los datos más bajos obtenidos ya que estos reflejan las condiciones críticas del movimiento y en algunos casos se aplicó factores de reducción a los resultados ya algunas pruebas de resistencia se realizaron sobre muestras re moldeadas, esto con el fin de poder llegar a contempla un modelo que se acerque a la verdad y no diciendo que este sea igual.

Tabla 29. Valores de Propiedades Físicas y Mecánicas Utilizadas en los Modelos de estabilidad.

| Material Name | Color | Unit Weight<br>(kN/m3) | Strength Type          | Cohesion<br>(kPa) | Phi<br>(deg) | UCS<br>(kPa) | m       | S           | a        | Water<br>Surface | Ru  |
|---------------|-------|------------------------|------------------------|-------------------|--------------|--------------|---------|-------------|----------|------------------|-----|
| Qc            |       | 25                     | Mohr-Coulomb           | 30                | 17           |              |         |             |          | None             | 0.5 |
| Kscn          |       | 26                     | Generalised Hoek-Brown |                   |              | 90000        | 2.52461 | 0.00221808  | 0.508086 | None             | 0.5 |
| ksgt L        |       | 23                     | Generalised Hoek-Brown |                   |              | 90000        | 3.60353 | 0.014666    | 0.502459 | None             | 0.5 |
| Ksgp P        |       | 23                     | Generalised Hoek-Brown |                   |              | 40000        | 1.5089  | 0.000686468 | 0.510622 | None             | 0.5 |

Fuente: Registro fotográfico.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR

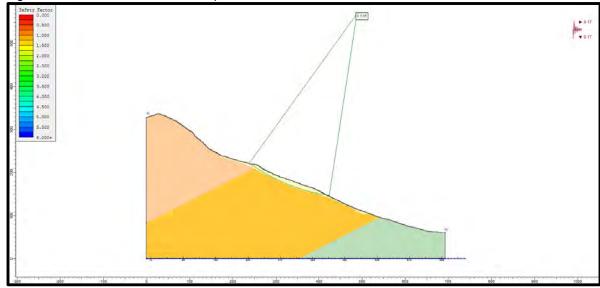



Figura 39. Perfil geológico AA'



Fuente: Registro fotográfico.

Figura 40. Modelo de análisis perfil A-A'

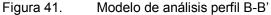


Fuente: Registro fotográfico.

Los resultados de este análisis se relacionan en las siguientes tablas.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR

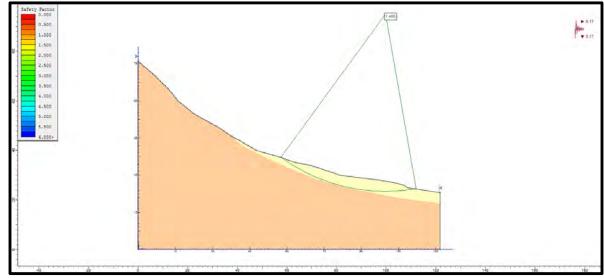



Tabla 30. Factores de seguridad para el modelo perfil A-A'

|                                                                                  |                    | Factor de S                 | eguridad                  |                                 |
|----------------------------------------------------------------------------------|--------------------|-----------------------------|---------------------------|---------------------------------|
| Condición del modelo                                                             | Met.<br>Fellenious | Met. Bishop<br>Simplificado | Metodo de<br>Janbu Simple | Metodo<br>de Janbu<br>Corregido |
| Condición de agua subterránea normal (Ru = 0.1)                                  | 1.02               | 0.9                         | 1.1                       | 1.03                            |
| Condición de agua subterránea crítica (Ru = 0.3)                                 | 0,6                | 0.61                        | 0.606                     | 0.62                            |
| Condición de agua subterránea media (Ru = 0.2) y sismo (análisis pseudoestático) | 0,535              | 0.502                       | 0,494                     | 0.507                           |

Fuente: Registro fotográfico.





Fuente: Registro fotográfico.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



Tabla 31. Factores de seguridad para el modelo perfil B-B'

|                                                                                        | •                  | Factor de S                 | eguridad                  |                                 |
|----------------------------------------------------------------------------------------|--------------------|-----------------------------|---------------------------|---------------------------------|
| Condición del modelo                                                                   | Met.<br>Fellenious | Met. Bishop<br>Simplificado | Metodo de<br>Janbu Simple | Metodo<br>de Janbu<br>Corregido |
| Condición de agua subterránea normal $(Ru = 0.1)$                                      | 2.09               | 3.03                        | 2.08                      | 3.059                           |
| Condición de agua subterránea crítica (Ru = 0.3)                                       | 2.05               | 2.08                        | 2.7                       | 2.09                            |
| Condición de agua subterránea media<br>(Ru = 0.5) y sismo (análisis<br>pseudoestático) | 1.04               | 1.4                         | 1.3                       | 1.3                             |

Fuente: Registro fotográfico.

Como resultado de este capítulo se realiza el mapa Geomecánico que representa las zonas con condiciones homogéneas de resistencia de suelos, clasificación de las rocas, además de involucrar los factores de seguridad de los perfiles analizados y las zonas donde se observa los potenciales mecanismos de falla. Debido a la complejidad del movimiento es complicado establecer un modelo en dos dimensiones que refleje la realidad de mismo por tal motivo los modelos geotécnicos aquí presentados no representan la realidad del movimiento.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



# 9 ZONIFICACIÓN DE AMENAZAS POR FENÓMENOS DE REMOCIÓN EN MASA

## 9.1 DIAGNÓSTICO PRELIMINAR DE AMENAZAS

Se entiende como amenaza por fenómenos de remoción en masa (FRM), la probabilidad de ocurrencia de movimientos del terreno potencialmente perjudiciales en un área dada en un periodo específico. Usualmente una zonificación de amenazas es el resultado de la evaluación de parámetros topográficos, geológicos, geomorfológicos, climáticos, hídricos, agrologicos y geotécnicos, de donde se obtiene la susceptibilidad; luego, si a ello se agrega el potencial efecto de factores detonantes tales como el agua en sus diversas formas (precipitaciones, infiltraciones, fugas, escorrentía), las sobrecargas de origen antrópico o natural y los sismos, entonces se llega a establecer la amenaza.

Amenaza; es la probabilidad de ocurrencia de un evento potencialmente dañino, caracterizado por una cierta intensidad, dentro de un periodo dado y en un área determinada.

**Vulnerabilidad**; es el sistema de condiciones y procesos resultado de los factores físicos, sociales, económicos, culturales y ambientales, que aumentan o disminuyen la susceptibilidad de una comunidad o infraestructura al impacto de las amenazas.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



**Riesgo**; es la probabilidad de que se produzcan pérdidas socio-económicas en un determinado momento y en un área del territorio determinada, a causa de una amenaza.

Existen amenazas por inundación, erosión hídrica y fenómenos de remoción en masa (FRM), las cuales es importante identificar y caracterizar, para tomar medidas de mitigación que permitan la disminución de la vulnerabilidad y la complementación de un plan de emergencia el sector Tabla 32.

Tabla 32. Parámetros físicos y naturales estimados para la Identificación de Zonas Inestables (Deslizamientos)<sup>6</sup>

| TIPOLOGÍA DE<br>INDICADORES POR<br>SU NATURALEZA | INDICADORES<br>(ANTECEDENTES)                                                                                                               | INDICADORES POTENCIALES                                                                                                              |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Geológicos                                       | Afloramiento de rocas alteradas (diaclasadas), estructuras de formas irregulares.                                                           | Planos de fracturamiento a favor de la pendiente, estructuras rocosas de formas irregulares, material poco consolidado o deleznable. |
| Geomorfológicos                                  | Terreno con pequeñas depresiones, relieve ondulado, existencia de escarpes y/o contrapendientes.                                            | Pequeñas depresiones, relieve ondulado, apertura de grietas en el terreno                                                            |
| Hidrogeológicos                                  | Abundancia relativa de agua (zonas de mayor vertimiento hídrico), suelos saturados, régimen cambiante de corrientes hídricas, acumulación o | Abundancia relativa de agua y zonas de surgencia hídrica.  Suelos con alto porcentaje de                                             |
|                                                  | estancamiento de agua en proximidades a zonas inestables,                                                                                   | humedad o mojados en tiempo continuo.                                                                                                |

<sup>&</sup>lt;sup>6</sup> (Adaptación Grupo de investigaciones UPTC, Metodología para el análisis de los riesgos naturales, (MET-ALARN) Agencia Suiza para el Desarrollo y la Cooperación).





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



|               | desviación de ríos.                                                                                                                                                          |                                                                                                               |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Vegetales     | Existencia de plantas típicas de zonas húmedas, troncos torcidos y/o inclinados, rotura de raíces y raíces tensas, discontinuidades repentinas en la cobertura vegetal.      | Existencia de plantas típicas de zonas húmedas, raíces tensas.  Árboles tumbados en la parte baja del tronco. |
| Estructurales | Postes inclinados, cables tensos o flojos, casas o construcciones agrietadas o inclinadas, grietas u ondulaciones en los pavimentos o capas de rodadura, cercos desplazados. |                                                                                                               |
| Toponimia     | Nombres de lugares que pueden sugerir inestabilidad del terreno como Cerro Agua Blanca, Vereda Volcaneras.                                                                   |                                                                                                               |
| Históricos    | Testimonios o documentos de eventos pasados.                                                                                                                                 |                                                                                                               |

Fuente: Resultado del estudio

#### 9.2 RESULTADO DE ANALISIS

Para la clasificación de la amenaza de la zona se utilizaron como criterios de categorización los presentados en la Tabla 33., teniendo en cuenta los parámetros de la Metodología de Leone.

Tabla 33. CATEGORIZACION DE AMENAZAS POR FENOMENOS DE REMOCION EN MASA (FRM).

| CATEGORÍA DE<br>AMENAZA | F.S. CONDICIONES<br>NORMALES | F.S. CONDICIONES<br>EXTREMAS |
|-------------------------|------------------------------|------------------------------|
| BAJA                    | > 1.9                        | > 1.3                        |
| MEDIA                   | 1.2 – 1.9                    | 1.0 – 1.3                    |
| ALTA                    | < 1.2                        | < 1.0                        |

Fuente: Resultado del estudio





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Para los análisis se tuvieron en cuenta el escenario actual, condiciones normales (sin sismo y nivel freático actual) y condición extrema (nivel freático abatido y sismo).

También se realiza una evaluación de la amenaza a partir de la norma NSR-10, donde se establecen los factores de seguridad para taludes los cuales se presentan en la Tabla 34. Teniendo en cuenta la clasificación en que se encuentra el Municipio de Ventaquemada como Zona de Amenaza sísmica Intermedia.

Tabla 34. CATEGORIZACION DE AMENAZA POR FRM SEGÚN NSR-10

| CONDICION                                                                                              | F.S. BASICOS<br>MINIMOS DIRECTOS |
|--------------------------------------------------------------------------------------------------------|----------------------------------|
| TALUDES - CONDICION ESTATICA Y AGUA SUBTERRANEA NORMAL                                                 | 1.5                              |
| TALUDES - CONDICION SEUDO - ESTATICA<br>CON AGUA SUBTERRANEA NORMAL Y<br>COEFICIENTE SISMICO DE DISEÑO | 1.02                             |

Fuente: Resultado del estudio

#### 9.3 ANALISIS DE AMENAZA

La zona del deslizamiento se encuentra ubicada en la Vereda Estancia Grande, está totalmente definida, con una gran diferencia de altura, limitada en la parte inferior por la doble calzada Tunja - Bogotá en el Municipio de Ventaquemada.





## MINISTERIO DE AMBIENTE Y DESARROLLO

SOSTENIBLE
FONDO DE COMPENSACIÓN AMBIENTAL FCA
CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR
-CORPOCHIVOR



Fotografía 29. SE OBSERVA EL MATERIAL DESPLAZADO



Fuente: Registro fotográfico

Fotografía 30. AGRIETAMIENTOS GENERADOS EN EL MATERIAL



Fuente: Registro fotográfico





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



Se observa la gran cantidad de material desplazado, con presencia de grietas y terracetas, diferencia de pendiente. En la parte baja (pata del deslizamiento).

En este estudio, ante la manifestación de inestabilidad del terreno, la amenaza se ha obtenido directamente de la valoración de los efectos notables en el sector, los cuales se evidencian en geoformas, movimientos del terreno, hundimientos, trazas de superficies de falla, presencia de grietas, presencia de escarpes, agrietamiento de las construcciones existentes dentro del cuerpo del deslizamiento y cinemática actual.

El deslizamiento presentado en la Vereda Estancia Grande del municipio de Ventaguemada es un movimiento antiguo, presentando reactivaciones temporadas invernales, periódicas durante las en donde el nivel de precipitación en este sector es alto generando modificaciones de manera considerable en las condiciones morfológicas del terreno, donde se observan grietas y hundimientos diferenciales que facilitan la acumulación del agua de escorrentía. manteniendo saturada la zona. modificando de manera considerable las condiciones morfológicas del terreno, limitando el uso de los predios para actividades agrícolas y pecuarias.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Como resultado de esta valoración se obtuvo la zonificación de amenazas (Ver Mapa). Se tienen 2 zonas de Amenaza: Alta y Media.

#### Amenaza Alta.

Corresponde a la zona delimitada por la topografía, en la parte alta desde la corona del deslizamiento, hasta donde se encuentra la línea férrea.

## Amenaza Media.

Corresponde a la parte baja del deslizamiento, en donde se encuentran las viviendas censadas.

Una vez definidas las características y el comportamiento de la zona, para el análisis de estabilidad se plantearon diferentes condiciones del terreno, presentando escenarios y comportamientos diferentes, basados en estos resultados se plantean las obras necesarias para el manejo de esta zona.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



### 10 EVALUACIÓN Y ANALISIS DE VULNERABILIDAD Y RIESGO

En el análisis de vulnerabilidad y riesgo se evalúa teniendo en cuenta los elementos expuestos predominantes en el área de estudio, como viviendas e infraestructura.

### **10.1 VULNERABILIDAD**

La vulnerabilidad constituye un sistema dinámico, que surge como consecuencia de la interacción de una serie de factores y características (externas e internas) que convergen en una comunidad o área particular. A esta interacción de factores se le conoce como vulnerabilidad global. Esta vulnerabilidad global puede dividirse en varias vulnerabilidades o factores de vulnerabilidad, todos ellos relacionados entre sí: vulnerabilidad física; factores de vulnerabilidad económicos, sociales y ambientales. (Wilches-Chaux, 1993).

El estudio de vulnerabilidad física de los elementos expuestos, en este caso las viviendas, se realizó teniendo como fuente de información básica el formulario de inventario de Viviendas, el cual se anexa; El formulario indaga sobre diferentes tópicos, tendientes a establecer parámetros útiles tanto de la vulnerabilidad física como de la social. Para la primera, el análisis se realizó de manera semicuantitativa con adopciones específicas para este proyecto (más extrapolables para otros ámbitos) a la metodología propuesta por Leone (1996). Las adopciones se refieren a la resistencia de los elementos (tipología de viviendas). A la asignación del grado de exposición (escenario de riesgo) y a la matriz de daño elaborada con base en las anteriores. Para la segunda, la vulnerabilidad social, el análisis es apenas cualitativo y se basa en la





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



información de los formularios como: el nivel de ingresos, la percepción del peligro, las recomendaciones para medidas urgentes, la cobertura de los servicios públicos y el índice de carencia de la vivienda.

### 10.2 INVENTARIO DE VIVIENDAS

Se realizó dentro del estudio, un inventario de viviendas para la evaluación de la vulnerabilidad que consistió en el diligenciamiento de un formato que contiene las principales características de cada vivienda. La información contemplada en el formato incluye entre otros, datos sobre: área construida, estado actual de la construcción, sistema estructural, uso de la edificación, ingresos familiares y cobertura de servicios. Todos tendientes a establecer la exposición y la resistencia de las construcciones y la capacidad de reacción de los habitantes en caso de presentarse deslizamiento.

Fotografía 31. PARTE BAJA DEL DESLIZAMIENTO.



Fuente: Registro fotográfico





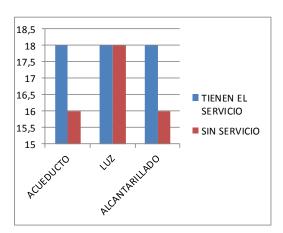

FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Figura 42. Indicadores de Índice de Vulnerabilidad social

|              | ACUEDUCTO | LUZ   | ALCANTARILLADO |
|--------------|-----------|-------|----------------|
| Numero de    |           |       |                |
| viviendas    | 18        | 18    | 18             |
| Tienen el    |           |       |                |
| servicio     | 16        | 18    | 16             |
| No tienen el |           |       |                |
| servicio     | 2         | 0     | 2              |
| % carencia   | 20        | 0     | 20             |
| Promedio     |           | 13,33 |                |
| Indice de    |           |       |                |
| servicios    |           | 0,133 |                |





### Fuente: Resultado del estudio

En el Anexo se presenta copia de los respectivos soportes del inventario. En la Vereda Estancia Grande, se encuentran 18 viviendas, dentro de la zona de influencia del deslizamiento, representando un alto grado de vulnerabilidad, con una mayor percepción del riesgo.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



### 10.3 ANÁLISIS DE VULNERABILIDAD

Se define vulnerabilidad con relación a los siguientes aspectos:

La **vulnerabilidad estructural** o física describe el grado hasta el cual una estructura es susceptible de ser dañada o alterada en una situación de peligro.

La **vulnerabilidad social** se definió como la capacidad de respuesta de la población ante la ocurrencia de un evento que ocasione daños, en este sentido se tomaron como componentes de análisis la capacidad económica de los pobladores, la cobertura de servicios públicos, las organizaciones cívicas, la tipología de las viviendas, y el nivel de conocimiento que los habitantes tienen del problema o potenciales repercusiones que este ocasiona o puede ocasionar sobre sus viviendas. Aunque la capacidad de respuesta de la comunidad involucra el estudio de otros aspectos como la organización del Municipio en lo referente a la Alcaldía, juntas de Acción comunal, puesto que estas son las encargadas de actuar como intermediarias entre la comunidad y las entidades del Departamento y de esa manera dar a conocer los procedimientos a seguir ante la ocurrencia de un desastre como un flujo de material en la zona.

La **vulnerabilidad humana** es la falta relativa de capacidad de una persona o comunidad para prever un peligro, hacerle frente, resistirlo y recuperarse de su impacto. Entre los factores que incrementan la vulnerabilidad humana a los desastres se encuentra la falta de planificación en el desarrollo o crecimiento de la infraestructura, el crecimiento demográfico, la falta de conocimientos acerca de cómo actuar frente a los efectos de los desastres y la pobreza.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



De todos los factores, es probable que la pobreza constituya el origen de la vulnerabilidad de la mayoría de la población en el sector, al impacto de la mayoría de las amenazas o peligros.

La vulnerabilidad es el nivel de pérdida de un conjunto dado de elementos, como resultado de la ocurrencia de un fenómeno. Los elementos que pueden ser afectados dentro de las áreas de ocurrencia de la amenaza; se tienen calles, edificaciones, población, cultivos entre otros.

### 10.4 Tipificación de las Estructuras

En forma general la vulnerabilidad es una función tanto de la intensidad del fenómeno como de la resistencia del elemento expuesto. La primera variable ya se tuvo en cuenta en la evaluación de la Amenaza; para la segunda variable (resistencia del elemento expuesto), se tipifican las viviendas teniendo en cuenta los criterios de resistencia de la estructura Tabla 35.

Tabla 35. Criterios de resistencia de la estructura

| TIPO DE SOLICITACION         | MODOS DE DAÑO                                  | CRITERIO DE RESISTENCIA DE LA<br>ESTRUCTURA                                              |
|------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------|
| DESPLAZAMIENTOS<br>LATERALES | Transporte, deformación, asentamientos ruptura | Profundidades de la cimentación arriostramiento de la estructura altura de la estructura |
| EMPUJES LATERALES            | Deformación ruptura                            | Profundidad de la cimentación refuerzo                                                   |
| IMPACTOS                     | Deformación ruptura                            | Refuerzo                                                                                 |

Fuente: Resultado del estudio





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



De acuerdo con los criterios expuestos anteriormente, para tipificar las viviendas se adopta el criterio de Leone.

### 10.5 CALIFICACION DE LOS DAÑOS

De acuerdo a la Metodología propuesta, para calificar los daños producidos en la zona por los Fenómenos de Remoción en Masa(FRM), se sigue con el criterio DRM (Delegation Aux Risques Majeurs), el cual divide los daños en cinco (5) categorías, como se muestra en la ¡Error! No se encuentra el origen de la eferencia.

Tabla 36. Categorías de los daños

| INDICE DE<br>DAÑO | TIPO DE DAÑO                                                | PORCENTAJE<br>DE DAÑO |
|-------------------|-------------------------------------------------------------|-----------------------|
| 1                 | Daños ligeros no estructurales. estabilidad no afectada     | 0.0 - 0.1             |
| 2                 | Figuración de paredes (muros). reparaciones no urgentes     | 0.2 – 0.3             |
| 3                 | Deformaciones importantes. daños en elementos estructurales | 0.4 – 0.6             |
| 4                 | Fracturación de la estructura. evacuación inmediata         | 0.7 - 0.8             |
| 5                 | derrumbe parcial o total de la estructura                   | 0.9 – 1.0             |

Fuente: Resultado del estudio

La vulnerabilidad física de las viviendas ubicadas en la zona de estudio, se puede evaluar teniendo en cuenta aspectos sobre tipología de viviendas, la cobertura de servicios públicos y la calidad de la construcción.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



### Fotografía 32. TIPO DE VIVIENDAS EN LA ZONA



Fuente: Registro fotográfico

Con fines prácticos para la elaboración de este trabajo, se optó por evaluar la vulnerabilidad de las viviendas a partir del grado de exposición de estas ante el fenómeno amenazante (Índice de Exposición IE) y el comportamiento de las construcciones en tales circunstancias (Índice de Resistencia, IR), siguiendo la siguiente metodología:

Se determinó la ubicación de la vivienda frente al deslizamiento

Se calcularon los índices de resistencia

Con los índices de resistencia y el grado de exposición, se obtuvo la resistencia movilizada, mediante la siguiente fórmula:

RM =  $(1 - IR^{IE})^{(1 - IE)}$ , (Expresión matemática propuesta por INGEOCIM, 1998 y modificada por Lara, 2002).





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR**  Universidad Pedagógica y Tecnológica de Colombia

EJECUTOR
CONVENIO No.
038/2012.

Dónde:

RM: Resistencia Movilizada IR: Índice de Resistencia IE: Índice de Exposición

10.6 INDICE DE EXPOSICION (IE)

Esta variable cobra importancia dentro del análisis de vulnerabilidad física, si y solo si los elementos se encuentran dentro de la zona de influencia de los eventos de flujo (es decir, expuestos) y pueden ser atacados por ellos.

La determinación del índice de exposición, involucró conocer el tipo de fenómeno a estudiar, y su distribución espacial. El límite externo de la zona de influencia directa, se obtiene a partir de la modelación del deslizamiento; se asignó el índice de exposición intentando considerar la magnitud de los eventos y su solicitación sobre los elementos expuestos.

Con base en la localización de viviendas dentro de las áreas de distribución espacial en la zona de deslizamiento, se asigna el número de exposición, intentando considerar la magnitud de los eventos y su solicitación, sobre los elementos expuestos teniendo en cuenta la superficie de contacto SC que una avalancha pudiera provocar, el valor de esta factor se tomó como porcentaje de la altura total de la vivienda, que sería cubierto por el material desplazado. Hf = Altura de flujo y Hv: Altura de vivienda.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



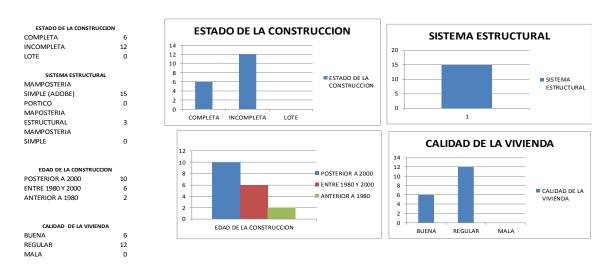
Tabla 37. Índice de Exposición

| RANGO                                                            | SC          |
|------------------------------------------------------------------|-------------|
| Hf<1/3 Hv                                                        | 0.09        |
| 1/3 Hv <hf 2="" 3="" <="" hv<="" th=""><th>0.40 a 0.60</th></hf> | 0.40 a 0.60 |
| 2/3 Hv < Hf < Hv                                                 | 0.75        |

Fuente: Registro fotográfico

### 10.7 INDICE DE RESISTENCIA (IR)

En términos generales, la importancia de evaluar la vulnerabilidad, radica en que a mayor resistencia de los elementos, la vulnerabilidad física es menor. Aunque la resistencia de la vivienda como conjunto está determinada por la de sus componentes, en el presente estudio, se estimó un comportamiento integral asociado a la clase de sistema estructural. En la figura 33 se muestra el tipo de cubierta, estructura de techo, estructura del piso y sistema estructural.






FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Figura 43. Tipos de estado



Fuente: Resultado del estudio

### 10.8 TIPOLOGIA DE VIVIENDAS

De acuerdo a la concepción de cualificar el comportamiento de las viviendas, estas fueron discriminadas según el sistema estructural, la calidad de sus materiales y su calidad constructiva en:

 Recuperación y palafitos. Incluye viviendas construidas con sistemas muy precarios en madera y sin un correcto sistema de transmisión de cargas al suelo de cimentación; en materiales como cartón, lata y madera; sin sistemas de cimentación, con techos en Zinc, madera, lata, cartón y mixtos; la calidad se considera baja.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



- Prefabricados. Son viviendas modulares en concreto, de media a baja calidad constructiva sobre placas delgadas del mismo material; la estructura del techo es en madera y su cubierta en teja de asbesto - cemento.
- Vivienda en mampostería: Contempla todas las viviendas de uno a tres pisos, cuyos muros son en mampostería con diferentes tipos de elementos de amarre estructural, donde ellos hacen las veces de unidades de soporte. Con calidad constructiva que oscila desde alta hasta regular, la cubierta generalmente es de asbesto cemento, teja de zinc o de barro.
- Vivienda hasta dos niveles: de buena calidad de construcción, con estructura. Estas unidades involucran sistemas aporticados con placas de entrepisos cuyos materiales de cubierta pueden ir desde la teja de asbesto - cemento hasta concreto.

El índice de resistencia utilizado para evaluar la vulnerabilidad, se midió a partir de las componentes del sistema estructural de las viviendas como son: Cubierta, C, la estructura del techo, **T**, y el tipo del sistema estructural SE y el tipo de material constitutivo de cada componente.

A las variables mencionadas se les asignó un grado de contribución a la resistencia, simulando que en todos los casos la solicitación más crítica es por presiones laterales, así:





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR Universidad Pedagógica y Tecnológica de Colombia EJECUTOR CONVENIO No. 038/2012.

**Tipo de Cubierta**: Se considera arbitrariamente que esta puede aportar un 20% de la resistencia de la vivienda ante un evento de deslizamiento o flujo de lodos. En el área de estudio predominan las cubiertas en teja de barro y Zinc (Anexo Inventario de viviendas)

**Estructura de la cubierta**. El material de la estructura del techo fue incluido como elemento aportante de un 20% de la resistencia total de la vivienda.

**Sistema Estructural**: Otra de las variables involucradas es el tipo de sistema estructural de la vivienda, siendo este el elemento considerado con mayor aporte a la resistencia que podría ofrecer la vivienda 60%. La figura 2 muestra la composición de las viviendas por sistema estructural según los datos obtenidos en la encuesta, las viviendas no cuentan con sistema estructural.

La tabla 34 contiene los valores asignados, de ella se aprecia que las unidades construidas en concreto reciben las mayores calificaciones (0.85)

De acuerdo a esto, el Índice de Resistencia se definió a partir de la siguiente relación:

IR = 0.2\*C + 0.2\*T + 0.6 \*SE Donde:

IR = Índice de Resistencia

C = Valor asignado para cada tipo de cubierta

T = Valor asignado para tipo de Estructura de techo

SE = Valor asignado para tipo de Sistema Estructural.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Tabla 38. Factores de Ponderación

|          | VALORES ASIGNADOS PARA LOS DIFERENTES TIPOS DE ESTRUCTURAS |     |                     |                       |                       |      |                     |                       |  |  |  |
|----------|------------------------------------------------------------|-----|---------------------|-----------------------|-----------------------|------|---------------------|-----------------------|--|--|--|
| CUBIERTA |                                                            |     | ESTRUCTURA DE TECHO |                       |                       |      | SISTEMA ESTRUCTURAL |                       |  |  |  |
| COD.     | TIPO FACTOR PONDERACIO                                     |     | COD.                | TIPO                  | FACTOR<br>PONDERACION | COD. | TIPO                | FACTOR<br>PONDERACION |  |  |  |
| 1        | TEJA DE<br>BARRO                                           | 0.4 | 1                   | CONCRETO<br>REFORZADO | 0.9                   | 1    | MUROS<br>PORTANTES  | 0.75                  |  |  |  |
| 2        | ASBESTO 0.5<br>CEMENTO                                     |     | 2                   | METALICO              | 0.9                   | 2    |                     | 0                     |  |  |  |
| 3        | ZINC                                                       | 0.2 | 3                   | MADERA                | 0.55                  | 3    |                     | 0.75                  |  |  |  |
| 4        |                                                            |     |                     |                       |                       |      |                     |                       |  |  |  |
| 5        |                                                            |     |                     |                       |                       |      |                     |                       |  |  |  |

Fuente: Resultado del estudio

### 10.9 INTENSIDAD E INDICE DE DAÑO

Los perjuicios que se producirían sobre las unidades, están condicionados por dos variables: La variable exposición y la variable resistencia; la primera involucra el tipo de evento (Deslizamiento, flujo), la localización de las viviendas frente al mismo y la solicitación que el proceso ejerza sobre los componentes; el segundo involucra la calidad, propiedades y atributos de las viviendas, las cuales dependen del tipo de tipología. Estas variables se incluyen en la matriz de Intensidad de Daño (InD) (Ver Tabla 35). Esta Intensidad cuantifica desde muy baja (I), hasta muy alta (V) y se formula como un Índice de Daño (ID), que representa el porcentaje de destrozos en la vivienda. La reciprocidad entre las variables InD e ID, fue establecida por el DRM (Delegation Aux Risques Majeurs) y se consigna en la Tabla 35.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



### Tabla 39. MATRIZ PARA LA DETERMINACION INTENSIDAD DE DAÑO

| MATRIZ PARA LA DETERMINACION DE LA INTENSIDAD DE DAÑO |                        |                      |                  |       |              |             |    |  |  |  |
|-------------------------------------------------------|------------------------|----------------------|------------------|-------|--------------|-------------|----|--|--|--|
|                                                       | 501                    | ICITACIONI           | TIPO DE VIVIENDA |       |              |             |    |  |  |  |
| EVENTO                                                | SOL                    | LICITACION           | RECUPERACION     | MUROS | PREFABRICADA | DE VIVIENDA |    |  |  |  |
|                                                       |                        | SC< 1/3 < SE         | IV               | Ш     | П            | П           | IV |  |  |  |
|                                                       | PRESIONES<br>LATERALES | 1/3 SE < SC < 2/3 SE | IV               | III   | П            | П           | IV |  |  |  |
| DESLIZAMIENTOS,                                       | LATENALLS              | 2/3 SE < SC < SE     | V                | V     | IV           |             | V  |  |  |  |
| FLUJOS DE LODOS                                       |                        | CUBIERTA PARCIALMENT | IV               | Ш     | III          | П           | V  |  |  |  |
|                                                       | ACUMULACIONES          |                      |                  |       |              |             |    |  |  |  |
|                                                       |                        | CUBIERTA TOTALMENTE  | V                | V     | IV           | Ш           | V  |  |  |  |

SC = SUPERFICIE DE CONTACTO SE = SUPERFICIE EXPUESTA

Fuente: Resultado del estudio

Tabla 40. DETERMINACION INDICE DE DAÑO

|        | DETERMINANCION DEL INDICE DE DAÑO |                        |                                             |  |  |  |  |  |  |
|--------|-----------------------------------|------------------------|---------------------------------------------|--|--|--|--|--|--|
| INTENS | IDAD DE DAÑO<br>(InD)             | INDICE DE<br>DAÑO (ID) | DESCRIPCION                                 |  |  |  |  |  |  |
| I      | MUY BAJA                          | 0.055                  | DAÑOS LIGEROS NO ESTRUCTURALES, ESTABILIDAD |  |  |  |  |  |  |
|        |                                   |                        | NO AFECTA                                   |  |  |  |  |  |  |
| 11     | BAJA                              | 0.115                  | FISURACION DE MUROS, REPARACIONES           |  |  |  |  |  |  |
| 111    | MEDIA                             | 0.50                   | DEFORMACIONES IMPORTANTES, FISURAS EN       |  |  |  |  |  |  |
|        |                                   |                        | ELEMENTOS ESTRUCTURALES                     |  |  |  |  |  |  |
| IV     | ALTA                              | 0.75                   | FRACTURAMIENTO DE LA ESTRUCTURA, EVACUACION |  |  |  |  |  |  |
|        |                                   |                        | INMEDIATA                                   |  |  |  |  |  |  |
| V      | MUY ALTA                          | 0.95                   | COLAPSO PARCIAL O TOTAL DE LA ESTRUCTURA    |  |  |  |  |  |  |

Fuente: Resultado del estudio





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



El porcentaje de daño o índice de pérdidas (IP) lo define Leone, como:

Dónde:

Vi : Valor inicial del bien (antes del evento).

Vf : Valor final del bien (después del evento).

Para el sector, las viviendas que se encuentran habitadas dentro de la zona del deslizamiento, con un porcentaje de Deformaciones Importantes, con daños en elementos estructurales. Estos daños son producidos por la deficiencia en las construcciones, ya que no cuentan con ningún tipo de estructura que cumpla con la Norma NSR-10.

Para la caracterización de las velocidades de los Movimientos se utiliza la escala propuesta por Cruden y Varnes, presentada en la ¡Error! No se ncuentra el origen de la referencia.

Tabla 41. Rangos de velocidad utilizadas en el estudio

| DESCRIPCION | CLASE | VELOCIDAD CARACTERISTICA         |
|-------------|-------|----------------------------------|
| Muy rápido  | VM1   | Mayor a 50 mm/seg                |
| Rápido      | VM2   | Entre 0,5 mm/seg y 50 mm/seg     |
| Moderado    | VM3   | Entre 0,05 mm/seg y 0,5 mm/seg   |
| Lento       | VM4   | Entre 0,005 mm/seg y 0,05 mm/seg |
| Muy lento   | VM5   | Menor a 0,005 mm/seg             |

Fuente: Resultado del estudio





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



En la Zona abajo del cuerpo del deslizamiento o Zona de Influencia Indirecta, en donde se encuentran las viviendas, en donde se observan daños generados por los empujes laterales de la masa

Para el caso en estudio, la solicitación corresponde a deformaciones moderadas altas a los desplazamientos laterales, que se pueden catalogar como moderados (VM3), de otra parte la infraestructura localizadas en la parte baja la solicitación es (PL1) que son presiones laterales altas.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



### 11 EVALUACION Y GENERACION DE ESCENARIOS DE RIESGO

En particular, se puede llamar la atención sobre la existencia de lugares de Alto riesgo mediante la representación de sitios críticos.

La formulación de escenarios de riesgo comprende la estimación de pérdidas y daños que se puede sufrir ante la ocurrencia de un evento asociado a los riesgos identificados, para lo cual se tomó como Escenario de Riesgo ante deslizamiento generado por el incremento de la precipitación en la zona, trabajando con la Matriz de Zonificación de Riesgo (Cardona). (Ver Mapa de Riesgos).

Tabla 42. MATRIZ PARA ESCENARIOS DE RIESGO

|            |  |                                       |   |          | NIVELES DE VULNERABILIDAD |   |          |   |       |   |       |  |
|------------|--|---------------------------------------|---|----------|---------------------------|---|----------|---|-------|---|-------|--|
|            |  |                                       |   |          |                           |   |          |   |       |   |       |  |
|            |  |                                       |   | MUY ALTO |                           |   | ALTO     |   | MEDIO |   | BAJO  |  |
|            |  |                                       |   |          | 4                         |   | 3        |   | 2     |   | 1     |  |
|            |  | MUY ALTO                              | 4 | 4        | MUY ALTO                  | 4 | MUY ALTO | 3 | ALTO  | 3 | ALTO  |  |
| NIVELES DE |  | ALTO                                  | 3 | 4        | MUY ALTO                  | 3 | ALTO     | 2 | MEDIO | 2 | MEDIO |  |
| PELIGRO    |  | MEDIO                                 | 2 | 3        | ALTO                      | 2 | MEDIO    | 2 | MEDIO | 1 | BAJO  |  |
|            |  | BAJO                                  | 1 | 3        | ALTO                      | 2 | MEDIO    | 1 | BAJO  | 1 | BAJO  |  |
|            |  | NIVELES DE RIESGO ANTE DESLIZAMIENTOS |   |          |                           |   |          |   |       |   |       |  |

Fuente: Resultado del estudio





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



### **RESULTADOS DE ENCUESTAS**

En el proyecto se elaboraron encuestas para evaluar la vulnerabilidad social en las viviendas encontradas en el sector. La encuesta incluía preguntas relacionadas con las características generales de las viviendas.

Dentro de los elementos expuestos se encuentran dieciocho viviendas en la zona de influencia del deslizamiento.

| FAMILIA                   | No. INTEGTRANTES |
|---------------------------|------------------|
| MARCO AURELIO FARFAN RUIZ | 2                |
| JUAN FERNANDO JEREZ       | 3                |
| ANA MARLEN FARFAN GALEANO | 4                |
| CECILIA MOYANO DE MANCIPE | 4                |
| BENANCIO MUÑOZ            | 8                |
| BENIGNO MUÑOZ             | 6                |
| WILSON FARFAN             | 4                |
| JAIME OTALORA             | 2                |
| JAIME OTALORA RAMIREZ     | 5                |
| TERESA FARFAN RUIZ        | 1                |
| JAIME OTALORA             | 2                |
| JOSE DANIEL BARRERA       | 5                |
| LORENZO MANCIPE MOYANO    | 2                |
| ALCIRA MUÑOZ              | 5                |
| ALFREDO FARFAN            | 7                |
| JOSE FARFAN RUIZ          | 3                |
| MERCEDES FARFAN DE FARFAN | 1                |
| GERMAN VANEGAS            | 2                |

Fuente: Resultado del estudio





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Fotografía 33. EN PARTE BAJA DEL DESLIZAMIENTO SE OBSERVA EL AREA URBANA DE VENTAQUEMADA



Fuente: Registro fotográfico

En la parte baja del deslizamiento se encuentra una zona de Riesgo Medio, en donde se encuentra una Amenaza Media con Alta vulnerabilidad por la densidad de población.

### 11.1 Análisis de vulnerabilidad

Se define vulnerabilidad con relación a los siguientes aspectos:





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



La **vulnerabilidad estructural** <sup>7</sup> o física describe el grado hasta el cual una estructura es susceptible de ser dañada o alterada en una situación de peligro.

La **vulnerabilidad humana** es la falta relativa de capacidad de una persona o comunidad para prever un peligro, hacerle frente, resistirlo y recuperarse de su impacto. Entre los factores que incrementan la vulnerabilidad humana a los desastres se encuentra la falta de planificación en el desarrollo o crecimiento de la infraestructura, el crecimiento demográfico, la falta de conocimientos acerca de cómo actuar frente a los efectos de los desastres y la pobreza.

De todos los factores, es probable que la pobreza constituya el origen de la vulnerabilidad de la mayoría de la gente, al impacto de la mayoría de las amenazas o peligros.

La vulnerabilidad es el nivel de pérdida de un conjunto dado de elementos, como resultado de la ocurrencia de un fenómeno. Los elementos que pueden ser afectados dentro de las áreas de ocurrencia de la amenaza; se tienen calles, edificaciones, población, cultivos entre otros.

\_

Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO), Comité Coordinador para la Prevención de los Desastres Naturales en América Central (CEPREDENAC). ANÁLISIS DE RIESGO POR INUNDACIONES Y DESLIZAMIENTOS DE TIERRA EN LA MICROCUENCA DEL ARENAL DE MONTSERRAT





#### MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE FONDO DE COMPENSACIÓN AMBIENTAL FCA

FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



# 11.2 Análisis estadístico de las encuestas realizadas en el municipio de ventaquemada, vereda estancia grande.

La caracterización de la población se realizó mediante el diseño y aplicación de una encuesta a las familias que habitan la zona de influencia del deslizamiento, buscando información primaria que permitiera conocer la percepción de la comunidad frente al riesgo y su capacidad de respuesta frente al mismo.

Fotografía 34. Vista de viviendas de la parte baja del movimiento.



Fuente: Registro fotográfico





#### MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE FONDO DE COMPENSACIÓN AMBIENTAL FCA

FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



### Tipo de sector evaluado.

El área a evaluar en el municipio de Ventaquemada, corresponde a la vereda estancia grande, y una parte del sector urbano que se encuentra al frente del deslizamiento sobre la doble calzada que conduce a la ciudad de Bogotá, en la cual se hallan ubicados varios negocios de comidas y servicios, que podrían verse afectados de presentarse un movimiento abrupto del terreno.

Fotografía 35. Vivienda del sector evaluado



Fuente: Registro fotográfico

### 11.2.1 Las viviendas

Dentro del recorrido del sector se visitaron dieciocho (18) viviendas, de las cuales la mitad son habitadas por sus propietarios y la otra mitad por arrendatarios, según lo manifestado por los encuestados.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



### 11.2.2 Servicios básicos.

Dieciséis (16) de las viviendas visitadas cuentan con servicios básicos de agua y luz, una (1) vivienda cuenta solo con servicio de agua y otra (1) solo cuenta con servicio de luz.

### 11.2.3 Acueducto.

Diecisiete viviendas que se hayan dentro de la zona de influencia del deslizamiento cuentan con servicio de acueducto, solo una vivienda al parecer no tiene este servicio.

### 11.2.4 Alcantarillado.

La red de alcantarillado cubre diecisiete (17) viviendas que se encuentran dentro de la zona de influencia del deslizamiento, solo una (1) vivienda al parecer no está dentro de esta red de servicio público.

### 11.2.5 Seguridad social.

Trece de las familias visitadas en el sector manifiestan estar cubiertas por el régimen de seguridad social subsidiado y las otras cinco pertenecen al régimen contributivo de seguridad social.

### 11.2.6 Discapacidad.

En cuanto a discapacidad, en el sector existen cuatro personas discapacitadas cada una de ellas al interior de un núcleo familiar que vela por ellos, asistiéndolos en sus necesidades básicas y de tratamientos médicos.

### 11.2.7 Genero.

En cuanto a género dentro de la zona de influencia del deslizamiento se encuentran habitando treinta y ocho (38) mujeres y treinta (30) hombres, para un





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



total de 68 personas, distribuidos en las 18 familias visitadas, de los cuales 24 son menores de edad.

### 11.2.8 Presencia de menores de edad.

En las viviendas habitadas del sector evaluado se haya viviendo veinticuatro (24) menores de edad, distribuidos en nueve (9) familias, todos al parecer bajo la protección de adultos responsables.

### 11.2.9 Niños escolarizados.

De las nueve (9) familias que cuentan con menores de edad, siete (7) de ellas cuentan con menores en edad escolar que asisten a la institución educativa de forma regular según lo manifiestan sus cuidadores.

### 11.2.10 Adultos mayores.

En diez (10) de la dieciocho (18) viviendas visitadas se encuentra la presencia de por lo menos un adulto mayor, todos bajo la compañía de un familiar, quienes les provee compañía y ayuda para el caso de algunos que la necesitan en sus actividades diarias.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Fotografía 36. Adulto mayor habitante de la zona.



Fuente: Registro fotográfico

### 11.2.11 Estratificación de las viviendas.

Quince (15) de las viviendas visitadas especialmente aquellas que se encuentran ubicadas sobre la vía principal corresponden a un estrato II, según lo manifestado por los encuestados, solo dos (2) viviendas se encuentran en estrato III y una (1) en estrato I.

### 11.2.12 Tipo de vivienda.

Once (11) de las viviendas son de tipo unifamiliar aunque algunas de ellas sirven también de establecimientos comerciales, cuatro (4) son multifamiliares y tres (3) son de tipo netamente comercial (Locales sin vivienda).





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



### 11.2.13 Área aproximada de las viviendas.

Nueve (9) de las viviendas visitadas poseen un área superior a los 100 M.C, seis (6) corresponden áreas entre 81 y 100 M.C, una (1) tiene un área entre 51 y 80 M.C y otras dos (2) tienen un área habitable de menos de 50 M.C.

Fotografía 37. Mujeres habitantes del sector.



Fuente: Registro fotográfico

### 11.2.14 Número de pisos tiene las viviendas

Sobresalen en el sector evaluado las viviendas de un solo piso de construcción, ya que trece (13) de las dieciocho (18) visitadas cuentan solo con una planta construida, cuatro (4) cuentan con dos plantas de construcción y solo se halla una vivienda con tres pisos de edificación, la mayoría de ellas sin mayores afectaciones hasta el momento por el movimiento del terreno.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



### 11.2.15 Edad de las construcciones

Más de la mitad (10) de las viviendas observadas en el sector sobrepasan los 21 años de construcción, dos (2) poseen entre dieciséis (16) y veinte (20) años de edificadas, una (1) está entre siete (7) y (15) años de construida, dos (2) entre seis (6) y diez (10) años y tres (3) con menos de cinco (5) años de construcción, lo que evidencia que las licencias de construcción en la zona se han venido dando de forma normal, sin tener en cuenta o percatarse del riesgo que se corre al estar justo en frente del terreno que ha comenzado a desprenderse progresivamente, y que se convierte en una amenaza para todos estos pobladores.

### 11.2.16 Armazón de las viviendas

Ocho (8) de las construcciones anteriormente descritas están edificadas en bloque, cinco (5) en ladrillo, cuatro (4) en adobe y una (1) en madera.

### 11.2.17 Cubierta de las viviendas.

Sobresalen en el sector las cubiertas en eternit (11), seguidas por las cubiertas en concreto (4), luego las cubiertas en teja de barro (2) y por último la cubierta metálica (1), la mayoría de estas cubiertas en estado de conservación aceptables.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



### 11.2.18 Muros de las viviendas

Los muros de igual forma conservan la homogeneidad en la construcción correspondiendo así a ocho (8) viviendas con muros en bloque, cinco (5) con muros en ladrillo, cuatro (4) en adobe y una (1) en madera.

Fotografía 38. Mujer dueña de establecimiento comercial el sector.



Fuente: Registro fotográfico

### 11.2.19 Acabado de los pisos.

En las viviendas sobresalen los pisos en baldosa común (9), seguidos por los de material de cemento (7) y por último los de tablones de madera rustica (2).

### 11.2.20 Estado de las construcciones.

El estado de las construcciones en su mayoría es bueno (para diez viviendas), y regular para las ocho restantes, esto al parecer porque el movimiento del terreno se encuentra hacia la parte alta de la montaña, por lo que no ha creado mayores





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



afectaciones a las construcciones y no ha permitido dimensionar el riesgo en los habitantes de la zona, al punto que muchos de ellos ni siquiera conocían de que un fenómeno así se estuviera dando en la parte alta de la montaña, justo en frente de sus viviendas y negocios.

### 11.2.21 Daños en las construcciones.

Por lo expuesto anteriormente los habitantes de las viviendas manifiestan que estas no presentan afectaciones relevantes en sus estructuras, que los daños que puedan tener son causados por otros aspectos ajenos al movimiento del terreno, solo una familia de la parte alta, manifestó que las grietas que posee su propiedad fueron causadas un movimiento sísmico que se dio en la zona.

### 11.2.22 Tipos de daño de las viviendas

Los daños reportados por los habitantes de las viviendas son mínimos por lo que se consideran de tipo ligero.

Fotografía 39. Mujer dueña de establecimiento comercial el sector.



**Fuente: Registro Fotografico** 





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



### 11.2.23 Parte de la construcción más afectada.

Solo dos familias manifiestan tener pequeñas afectaciones en los muros de sus viviendas, las demás dicen no tener una afectación relevante que mencionar.

### 11.2.24 La vivienda con bases o cimientos.

Doce de las construcciones cuentan con bases o cimientos y seis no cuentan con este sistema de sostenimiento.

### 11.2.25 Inestabilidad del suelo.

Dieciséis (16) de las familias visitadas manifiestan que sus terrenos no son inestables, solo una (1) piensa que el terreno es inestable por el movimiento de masa que se está dando, otra (1) familia cree que el terreno es inestable por otro motivo, como es las filtraciones de agua que existen en la parte alta de la zona evaluada.

### 11.2.26 Ingresos económicos de las familias.

Doce (12) de las familias encuestadas manifiestan tener ingresos superiores a un SMLV ya que son dueños de negocios, cinco familias tiene ingresos aproximadamente de un salario mínimo, y solo una familia tiene ingresos por menos de la mitad de un SMLV.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Fotografía 40. Establecimiento comercial el sector.



Fuente: Registro fotográfico

### 11.2.27 Hogares con apoyo de familia extensa.

Doce (12) de las familias cuentan con familia extensa que puede ser su red cercana de apoyo ante cualquier eventualidad, las otras seis (6) familias no cuentan con este tipo de apoyo familiar.

### 11.2.28 Acciones de mitigación implementadas.

La mayoría de las familias visitadas NO ha realizado alguna acción para mitigar el riesgo, solo una familia ha hablado con las autoridades municipales para generar conciencia del fenómeno que se está gestando en la parte alta de la montaña, esperando que se realicen acciones al respecto.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



### 11.2.29 Capacidad de afrontamiento del riesgo.

Dieciséis (16) familias manifiestan nunca haber recibido una capacitación en manejo del riesgo, solo dos familias se consideran capacitadas para afrontar una situación de riesgo y es porque uno de sus integrantes pertenece al grupo de salvamento del municipio y por ende conoce del manejo de estas situaciones.

### 11.2.30 Actuaciones de las personas frente a un evento catastrófico.

La mayoría de los habitantes piensan que ante un evento catastrófico lo mejor es salir corriendo, algunos buscando sitios seguros, otros simplemente alejándose del peligro, pero algunos pocos reconocen que no sabrían cómo reaccionar de forma efectiva.

Fotografía 41. Habitante de la zona perteneciente a la defensa civil del municipio.



Fuente: Registro fotográfico





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



### 11.2.31 Tiempo que lleva el fenómeno de remoción en masa.

Trece (13) de las familias encuestadas dicen haber escuchado de pequeños movimientos de tierra en la parte alta de la montaña desde hace más de un año, pero nunca le han prestado importancia, cuatro (4) familias dicen haber escuchado de este movimiento de terreno hace menos de un año, pero tampoco lo han dimensionado como algo que pueda poner en riesgo sus bienes materiales o sus vidas, solo una persona manifiesta que este fenómeno se ha venido dando hace menos de cinco años de forma lenta pero progresiva y se ha agudizado en el último año a causa del invierno.

### 11.2.32 Conocimiento del fenómeno de remoción en masa.

La mayoría de los habitantes manifiestan que desconocen que estos terrenos sean inestables y representen un riesgo para ellos, pues la mayoría no conocían de esta situación cuando comenzaron a trabajar y vivir allí.

### 11.2.33 Afectación emocional familiar.

La gran mayoría de las personas que habitan la zona de influencia del deslizamiento se sienten atemorizadas, por la probabilidad de la ocurrencia de un deslizamiento en este sector donde ellos laboran y habitan, por lo que esperan la pronta acción de las autoridades competentes al respecto.

### 11.2.34 Economía familiar.

En la actualidad once (11) familias dependen económicamente de los predios que ocupan, y siete (7) más se verían afectadas en la condición de habitabilidad de las viviendas.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



### 11.2.35 Uso del suelo.

El uso de los predios es en su mayoría son para vivienda pero a su vez mezclados con funciones agrícolas (5 predios), otros con funciones comerciales (6predios) y siete (7) solamente usados como lugar de habitación.

Fotografía 42. Establecimiento comercial el sector.



Fuente: Registro fotográfico

### 11.2.36 Capacitación en prevención de riesgos.

Once (11) familias desconocen programas de capacitación que ofrezca el municipio en temas de riesgo de desastre y siete (7) familias saben que si se realizan este tipo de capacitaciones pero solo unos pocos han acudido a ellas.

### 11.2.37 Reubicación de las familias.

Si se llegase a presentar la necesidad de reubicarse en otro lugar, las familias opinan que se mantendrían en el casco urbano (11 familias), se mantendrían en la misma vereda pero en un lugar menos peligroso (4 familias), se irían a otra vereda (2 familias) y una (1 familia) no sabría que opción tomar.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



### 11.2.38 Consejo municipal de gestión del riesgo.

La mayoría de las familias manifiestan que no han recibido ninguna visita, ni información por parte de esta entidad, solo tres familias manifiestan que si las han visitado pero por parte de la defensa civil del municipio.

### 11.2.39 Peticiones a los entes municipales.

La mayoría de las familias esperan que se les brinde apoyo en cuanto al manejo del riesgo al que están expuestos, ya que no desean que esta situación llegue a afectarlos radicalmente en su vida laboral y familiar, por lo que se pide que se tomen las acciones preventivas e informativas pertinentes.

Fotografía 43. Establecimiento comercial el sector.



Fuente: Registro fotográfico





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



### 12 OBRAS RECOMENDADAS

Los planes de prevención, mitigación, monitoreo y mantenimiento son presentados en detalle en el Anexo 10 ( Diseño de Obras ) , que forma parte de este documento.

El presupuesto general se encuentra adjunto en el anexo 11 (Presupuesto y especificaciones técnicas de obras ) y los planos de ubicación y detalle de las obras propuestas para control y mitigación de los FRM se presentan en el anexo 12 de este documento (Planos Obras Recomendadas).

En la memoria digital del presente estudio se presenta una hoja de cálculo correspondiente al presupuesto de las obras propuestas y el análisis detallado APU. Dicha hoja puede ser modificada por la entidad contratante correspondiente para modificación de AIU, precios unitarios, costos de transporte a los sitios de obra y demás ajustes que sean considerados por dicha entidad.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



### 13 CONCLUSIONES.

- Se clasifica el proceso como deslizamiento compuesto ya que su control estructural resulta en superficies de ruptura irregulares incluye movimiento rotacional a lo largo de un escarpe principal seguido de un desplazamiento a lo largo de una superficie de debilidad casi horizontal, paralela a la estratificación, el proceso es activo remontante, y su velocidad es lenta, presenta un área aproximada de 3967,6 m² con una profundidad promedio de 4 m, las causas posibles pueden ser, por material plástico débil detonado por lluvias, por el mal manejo del suelo relacionado con matorrales, cultivos, uso agrícola, ganadería; los daños presentes en el área de las viviendas, áreas agrícolas y para pastoreo, erosión y deforestación son producto del desarrollo del deslizamiento. Se presenta entre la Formación Labor y Tierna (Kg2), Formación Conejo (Kscn), Formación Plaeners (Kg2) y el Deposito Coluvial (Qc).
- Con ayuda del software Res2DINVX64, se relacionaron datos de las respectivas resistividades de los materiales del área obtenidas por el equipo, resultando así el modelamiento del talud, donde se observan que el área está conformada por tres unidades Geoelectricas bien definidas, donde encontramos niveles de arcillas con rangos de resistividades que oscilan entre -273 40 □\*m, los valores negativos se deben a grietas de gran magnitud, areniscas con resistividades que van





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



| desde                              | 25 | 0 - | 1500 | □*m,   | este | valor  | de  | resist | tividad | es  | bastante | gra | ande |
|------------------------------------|----|-----|------|--------|------|--------|-----|--------|---------|-----|----------|-----|------|
| debido                             | а  | que | se   | pueden | enc  | ontrar | gra | ıva,   | arenis  | cas | saturad  | os  | con  |
| resistividades entre 70 - 250 □*m. |    |     |      |        |      |        |     |        |         |     |          |     |      |

La comunidad en particular recomienda que se tomen acciones frente a las filtraciones de agua que se dan desde la parte alta del movimiento y que se le oriente al campesino en como desde su cotidianidad contribuir a la mitigación de los riesgos de deslizamiento.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -**CORPOCHIVOR** 



### 14 RECOMENDACIONES

- Debido vulnerabilidad de la vivienda presente en la zona de amenaza media, se deberá hacer inspección periódica de la misma para determinar su estado estructural, con el fin de tomar las medidas que se consideren necesarias al respecto.
- Se recomienda la construcción de barreras de micropilotes en madera, con una longitud de 6 a 8m, separados cada 2 m. Esto se acompañara de barreras vivas, es decir líneas de árboles de raíz profunda, con la finalidad de confinar las masas de suelo en movimiento.
- Se debe generar un sistema de captación de las aguas de riego de los cultivos presentes en la zona con el fin de mantener un nivel de humedad bajo en el terreno.
- De igual manera se deberá revegetalizar la zona del deslizamiento, con arbustos bajos de la región, que impidan fenómenos erosivos y controlen la escorrentía superficial de agua.
- Sobre la vía férrea se deberá construir una línea de micropilotes en concreto de una longitud de 10 m, distancia cada 2 m entre sí.
- Se recomienda el amojonamiento de puntos sobre la vía férrea y la toma de medidas con periodos no mayores a 2 meses con el fin de determinar posibles desplazamientos de la vía y así tomar las medidas correctivas a las que haya lugar.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



### 15 BIBLIOGRAFÍA

Cuello, N., T.J. Killeen, C.V. Antezana. 1991. Línea de intercepción, una metodología apropiada para el estudio de las sabanas tropicales. en: C. Miranda, D. Restrepo, y E. Castellano (Eds.). Memoria del Curso de Vegetación y Ecología Tropical con un énfasis en los métodos.

Metodologfa CORINELand Cover adaptada para Colombia 2010 Saunders, D.A., Hobbs, R.J. y Margules, C.R. 1991. Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5: 18-32.

Foster, B. R., N. C. Hernández, E., E. K. Kakudidi y R. J. Burnham. 1995. Un método de transectos variables para la evaluación rápida de comunidades de plantas en los trópicos. Manuscrito no publicado. Chicago: Environmental and Conservation Programs, Field Museum of Natural History; and Washington, D. C.: Conservation Biology, Conservation International.

APG II. The Angiosperm Phylogenetic Group. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. *Botanical Journal of the Linnean Society* 141 (4): 399–436.

Freire Fierro, A. 2004. Botánica Sistemática Ecuatoriana. Missouri Botanical Garden, FUNDACYT, QCNE, RLB y FUNBOTANICA.Murray Print, St. Louis. 79-91.

León, J. 1987. Botánica de los cultivos tropicales. Inst. Interamericano de cooperación para la agricultura. 1-445.





FONDO DE COMPENSACIÓN AMBIENTAL FCA CORPORACIÓN AUTÓNOMA REGIONAL DE CHIVOR -CORPOCHIVOR



Scagel, R.F.; Bandoni, R.J., Rouse; G.E., Schofield, W.B.; Stein, J.R. & T.M.C., Taylor.1983. El Reino Vegetal. Los grupos de plantas y sus relaciones evolutivas. Ediciones Omega, S.A. Barcelona. 1-659.

THOMSON, Eugene P. Odum, Gary W. Warret. Fundamentos de Ecología. 5ª Edición, 2006.

Adaptado de Leone (1996)

Cardona – Arboleda O. (1989). VULNERABILIDAD Y RIESGO POR DESASTRE – TERMINOS DE USO COMUN EN MANEJO DE RIESGO. Primer taller de planificación en manejo de desastres. ONAD – Colombia – Universidad Jorge Tadeo Lozano.

Cruden, D. y Varnes D. (1991) Landslides types and processes. Universidad de Alberta.

INGEOMINAS. Evaluación del Riesgo por Fenómenos de Remoción en Masa. - Guía Metodológica. 2001.

Leone, F (1999) Concept de Vulnerabilite Appliquea L'évaluation des risques generes par les phenomenes de mouvements de terrein. Tesis de Doctorado, Universidad de Grenoble.